Generalized Arithmetic Graphs With Equal and Unequal Powers of Annihilator Domination Number

Authors

  • P. Aparna Department of Mathematics, Jawaharlal Nehru Technological University, Anantapuramu, Andhra Pradesh
  • K. V. Suryanarayana Rao Department of Mathematics, Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal, Andhra Pradesh
  • E. Keshava Reddy Department of Mathematics, Jawaharlal Nehru Technological University, Anantapuramu, Andhra Pradesh

DOI:

https://doi.org/10.26713/cma.v12i1.1406

Keywords:

Split dominance, Array and number of annihilator domination, Arithmetic graphs

Abstract

Current work is carried out in Generalized Arithmetic Graphs to explore the theory of conquest by the Annihilator Dominion Number of Upper bound. Kulli and Janakiram [8] first demonstrated split domination while Suryanarayana Rao and Vangipuram [12] introduced the domination of Annihilator and obtained several interesting results in Arithmetic graphs. There are few significant and important studies on Annihilator's domination being examined in the current paper.

Downloads

Download data is not yet available.

References

T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag, Berlin ” Heidelberg (1980), DOI: 10.1007/978-1-4757-5579-4.

S. Arumugam and A. Thuraiswamy, Total domination in graph, Ars Combinatoria 43 (1996), 89 – 92, http://14.139.186.253/id/eprint/2496.

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland (1976), https://snscourseware.org/snsrcas/files/CW_5d16efa85c2e3/BondyMurtyGTWA-compressed.pdf.

E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247 – 271, DOI: 10.1002/net.3230070305.

E. J. Cockayne, R. W. Dawes and S. T. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211 – 219, DOI: 10.1002/net.3230100304.

F. Harary, Graph Theory, Addison-Wesley, Massachusetts (1969), https://www.worldcat.org/title/graph-theory/oclc/64676.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Graph Domination, Marcel-Dekkar, Inc., New York (1998), https://www.routledge.com/Fundamentals-of-Dominationin-Graphs/Haynes-Hedetniemi-Slater/p/book/9780824700331.

V. R. Kulli and B. Janakiram, The split domination number of a graph, Graph Theory Notes of New York, New York Academy of Sciences, XXXII (1997), 16 – 19.

R. Laskar and H. B. Walikar, On domination related concepts in graph theory, in: Combinatorics and Graph Theory, Lecture Notes in Mathematics 885 (1981), 308 – 320, Springer, Berlin ” Heidelberg, DOI: 10.1007/BFb0092276.

K. V. S. Rao and V. Sreeenivasan, Split domination in product graphs, I.J. Information Engineering and Electronic Business 4 (2013), 51 – 57, http://www.mecs-press.com/ijieeb/ijieeb-v5-n4/IJIEEB-V5-N4-7.pdf.

K. V. S. Rao and V. Sreeenivasan, The split domination in arithmetic graphs, International Journal of Computer Applications 29(3) (2011), 46 – 49, DOI: 10.1.1.259.652.

K. V. Suryanarayana Rao and Vangipuram, The annihilator domination in some standard graphs and arithmetic graphs, International Journal of Pure and Applied Mathematics 106(8) (2016), 123 – 135, DOI: 10.12732/ijpam.v106i8.16.

N. Vasumathi and S. Vangipuram, Existence of a graph with a given domination parameter, in: Proceedings of the Fourth Ramanujan Symposium on Algebra and its Applications, University of Madras, Madras, 187 – 195 (1995), https://www.academia.edu/33290904/Domination-in-Graph-with-Application.

Downloads

Published

31-03-2021
CITATION

How to Cite

Aparna, P., Suryanarayana Rao, K. V., & Reddy, E. K. (2021). Generalized Arithmetic Graphs With Equal and Unequal Powers of Annihilator Domination Number. Communications in Mathematics and Applications, 12(1), 171–187. https://doi.org/10.26713/cma.v12i1.1406

Issue

Section

Research Article