On Solving Minimization Problem and Common Fixed Point Problem Over Geodesic Spaces With Curvature Bounded Above

Authors

  • Nopparat Wairojjana Applied Mathematics Program, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU), 1 Moo 20 Phaholyothin Road, Klong Neung, Klong Luang, Pathumthani, 13180
  • Phachara Saipara Division of Mathematics, Department of Science, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Nan, 59/13 Fai Kaeo, Phu Phiang, Nan 55000

DOI:

https://doi.org/10.26713/cma.v11i3.1404

Keywords:

Minimization problem, Fixed point problem, Iteration process, Proximal point algorithm

Abstract

In this paper, we introduce a new modified proximal point algorithm for solving minimization problems and common fixed point problem in CAT(1) spaces. We prove strong and Δ-convergence theorems under some mild conditions. Further, an application on convex minimization and common fixed point problem over CAT(κ) spaces with the bounded positive real number κ are presented.\ Our results extend and improve the corresponding recent results in the literature.

Downloads

References

A. Abkar and M. Eslamian, Common fixed point results in CAT(0) spaces, Nonlinear Analysis: Theory, Methods & Applications 74(5) (2011), 1835 – 1840, DOI: 10.1016/j.na.2010.10.056.

R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for human spine, IMA Journal of Numerical Analysis 22(3) (2002), 359 – 390, DOI: 10.1093/imanum/22.3.359.

D. Ariza-Ruiz, L. Leu¸stean and G. López-Acedo, Firmly nonexpansive mappings in classes of geodesic spaces, Transactions of the American Mathematical Society 366(8) (2014), 4299 – 4322, DOI: 10.1090/S0002-9947-2014-05968-0.

M. Bacák, Computing medians and means in Hadamard spaces, SIAM Journal on Optimization 24(3) (2014), 1542 – 1566, DOI: 10.1137/140953393.

M. Bacák, The proximal point algorithm in metric spaces, Israel Journal of Mathematics 194(2) (2013), 689 – 701, DOI: 10.1007/s11856-012-0091-3.

O. A. Boikanyo and G. Morosanu, A proximal point algorithm converging strongly for general errors, Optimization Letters 4(4) (2010), 635 – 641, DOI: 10.1007/s11590-010-0176-z.

M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundelhren der Mathematischen, Springer-Verlag, Berlin (1999).

S. S. Chang, L. Wang, H. W. J. Lee and C. Chan, Strong and (Delta)-convergence for mixed type total asymptotically nonexpansive mappings in CAT(0) spaces, Fixed Point Theory and Applications 122 (2013), DOI: 10.1186/1687-1812-2013-122.

P. Chaoha and A. Phon-on, A note on fixed point sets in CAT(0) spaces, Journal of Mathematical Analysis and Applications 320(2) (2006), 983 – 987, DOI: 10.1016/j.jmaa.2005.08.006.

Y. J. Cho, L. Ciric and S. Wang, Convergence theorems for nonexpansive semigroups in CAT(0) spaces, Nonlinear Analysis: Theory, Methods & Applications 74(17)(2011), 6050 – 6059, DOI: 10.1016/j.na.2011.05.082.

P. Cholamjiak, A. A. Abdou and Y. J. Cho, Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory and Applications 227 (2015), DOI: 10.1186/s13663-015-0465-4.

S. Dhompongsa, A. Kaewkhao and B. Panyanak, Lim's theorems for multivalued mappings in CAT(0) spaces, Journal of Mathematical Analysis and Applications 312(2) (2005), 478 – 487, DOI: 10.1016/j.jmaa.2005.03.055.

R. Espí­nola and A. Fernández-León, CAT((kappa))-spaces, weak convergence and fixed points, Journal of Mathematical Analysis and Applications 353 (2009), 410 – 427, DOI: 10.1016/j.jmaa.2008.12.015.

O. P. Ferreira and P. R. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization 51(2) (2002), 257 – 270, DOI: 10.1080/02331930290019413.

O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization 29(2) (1991), 403 – 419, DOI: 10.1137/0329022.

B. Halpern, Fixed points of nonexpanding maps, Bulletin of the American Mathematical Society 73 (1967), 957 – 961, DOI: 10.1090/S0002-9904-1967-11864-0.

J. S. He, D. H. Fang, G. López and C. Li, Mann's algorithm for nonexpansive mappings in CAT((kappa)) spaces, Nonlinear Analysis: Theory, Methods & Applications 75(2) (2012), 445 – 452, DOI: 10.1016/j.na.2011.07.070.

S. Kamimura andW. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, Journal of Approximation Theory 106(2) (2000), 226 – 240, DOI: 10.1006/jath.2000.3493.

S. H. Khan and M. Abbas, Strong and (Delta)-convergence of some iterative schemes in CAT(0) spaces, Computers & Mathematics with Applications 61(1) (2011), 109 – 116, DOI: 10.1016/j.camwa.2010.10.037.

Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvent convex function in geodesic spaces, Journal of Fixed Point Theory and Applications 18(1) (2016), 93 – 115, DOI: 10.1007/s11784-015-0267-7.

Y. Kimura and F. Kohsaka, The proximal point algorithm in geodesic spaces with curvature bounded above, Linear and Nonlinear Analysis 3(1) (2017), 133 – 148.

W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Analysis: Theory, Methods & Applications 68(12) (2008), 3689 – 3696, DOI: 10.1016/j.na.2007.04.011.

W. A. Kirk, Geodesic geometry and fixed point theory II, International Conference on Fixed Point Theory and Applications, Yokohama Publication, Yokohama (2004), 113 – 142.

W. A. Kirk, Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), Colecc. Abierta, 64, Univ. Sevilla Secr. Publ., Seville 64 (2003), 195 – 225.

W. Kumam, N. Pakkaranang, P. Kumam and P. Cholamjiak, Convergence analysis of modified Picard-S hybrid iterative algorithms for total asymptotically nonexpansive mappings in Hadamard spaces, International Journal of Computer Mathematics 97(1-2) (2020), 175 – 188, DOI: 10.1080/00207160.2018.1476685.

L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, Journal of Mathematical Analysis and Applications 325(1) (2007), 386 – 399, DOI: 10.1016/j.jmaa.2006.01.081.

C. Li, G. López and V. Martí­n-Márquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds, Journal of the London Mathematical Society 79(2) (2009), 663 – 683, DOI: 10.1112/jlms/jdn087.

G. Marino and H. K. Xu, Convergence of generalized proximal point algorithm, Communications on Pure & Applied Analysis 3(4) (2004), 791 – 808, URL: http://AIMsciences.org.

B. Martinet, Régularisation d'inéuations variationnelles par approximations successives, ESAIM: Mathematical Modelling and Numerical Analysis – Modélisation Mathématique et Analyse Numérique 4 (1970), 154 – 158, URL: http://www.numdam.org/item?id=M2AN_1970__4_3_154_0.

S. Ohta, Convexities of metric spaces, Geometriae Dedicata 125 (2007), 225 – 250, DOI: 10.1007/s10711-007-9159-3.

N. Pakkaranang, P. Kumam and Y. J. Cho, Proximal point algorithms for solving convex minimization problem and common fixed points problem of asymptotically quasi-nonexpansive mappings in CAT(0) spaces with convergence analysis, Numerical Algorithms 78(3) (2018), 827 – 845, DOI: 10.1007/s11075-017-0402-1.

N. Pakkaranang, P. Kumam, C. F. Wen, J. C. Yao and Y. J. Cho, On modified proximal point algorithms for solving minimization problems and fixed point problems in CAT((kappa)) spaces, Mathematical Methods in the Applied Sciences (2019), DOI: 10.1002/mma.5965.

N. Pakkaranang, P. Kumam, P. Cholamjiak, R. Suparatulatorn and P. Chaipunya, Proximal point algorithms involving fixed point iteration for nonexpansive mappings in CAT ((kappa)) spaces, Carpathian Journal of Mathematics 34(2) (2018), 229 – 237, URL: https://www.jstor.org/stable/26898731.

N. Pakkaranang, P. Kumam, Y. J. Cho, P. Saipara, A. Padcharoen and C. Khaofong, Strong convergence of modified vicosity implicit approximation methods for asymptotically nonexpansive in complete CAT(0) spaces, Journal of Mathematics and Computer Science 17(3) (2014), 345 – 354, DOI: 10.22436/jmcs.017.03.01.

B. Panyanak, On total asymptotically nonexpansive mappings in CAT((kappa)) spaces, Journal of Inequalities and Applications 336 (2014), DOI: 10.1186/1029-242X-2014-336.

E. A. Papa Quiroz and P. R. Oliveira, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds, Journal of Convex Analysis 16(1) (2009), 49 – 69.

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization 14(5) (1976), 877 – 898, DOI: 10.1137/0314056.

S. Saejung, Halpern's iteration in CAT(0) spaces, Fixed Point Theory and Applications 2010 (2010), Article ID 471781, DOI: 10.1155/2010/471781.

P. Saipara, P. Chaipunya, Y. J. Cho and P. Kumam, On strong and (Delta)-convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT((kappa)) spaces, Journal of Nonlinear Sciences and Applications 8(6) (2015), 965 – 975.

N. Shahzad and J. Markin, Invariant approximations for commuting mappings in CAT(0) and hyperconvex spaces, Journal of Mathematical Analysis and Applications 337(2) (2008), 1457 – 1464, DOI: 10.1016/j.jmaa.2007.04.041.

S. T. Smith, Optimization techniques on Riemannian manifolds, in Hamiltonian and Gradient Flows, Algorithms and Control, American Mathematical Society, Providence, RI 3 (1994), 113 – 136.

K. Sombut, N. Pakkaranang and P. Saipara, Modified proximal point algorithms for solving fixed point problem and convex minimization problem in non-positive curvature metric spaces, Thai Journal of Mathematics 16 (2018), 1 – 16.

J. Tang and S. S. Chang, Viscosity approximation methods for two nonexpansive semigroups in CAT(0) spaces, Journal of Inequalities and Applications 2014 (2014), Article number 283, DOI: 10.1186/1029-242X-2014-283.

P. Thounthong, N. Pakkaranang, P. Saipara, P. Pairatchatniyom and P. Kumam, Convergence analysis of modified iterative approaches in geodesic spaces with curvature bounded above, Mathematical Methods in the Applied Sciences 42(17) (2019), 5929 – 5943, DOI: 10.1002/mma.5924.

P. Thounthong, N. Pakkaranang, Y. J. Cho, W. Kumam and P. Kumam, The numerical reckoning of modified proximal point methods for minimization problems in Non-positive curvature metric spaces, International Journal of Computer Mathematics 97(1-2) (2020), 245 – 262, DOI: 10.1080/00207160.2018.1551527.

C. Udriste, Convex functions and optimization methods on Riemannian manifolds, Mathematics and Its Applications 297 (1994), Kluwer Academic, Dordrecht.

J. H. Wang and C. Li, Convergence of the family of Euler-Halley type methods on Riemannian manifolds under the °-condition, Taiwanese Journal of Mathematics 13(2A) (2009), 585 – 606.

J. H.Wang and G. López, Modified proximal point algorithms on Hadamard manifolds, Optimization 60(6) (2011), 697 – 708, DOI: 10.1080/02331934.2010.505962.

H. K. Xu, A regularization method for the proximal point algorithm, Journal of Global Optimization 36(1) (2006), 115 – 125, DOI: 10.1007/s10898-006-9002-7.

Y. Yao and M. A. Noor, On convergence criteria of generalized proximal point algorithms, Journal of Computational and Applied Mathematics 217(1) (2008), 46 – 55, DOI: 10.1016/j.cam.2007.06.013.

Downloads

Published

30-09-2020

How to Cite

Wairojjana, N., & Saipara, P. (2020). On Solving Minimization Problem and Common Fixed Point Problem Over Geodesic Spaces With Curvature Bounded Above. Communications in Mathematics and Applications, 11(3), 443–460. https://doi.org/10.26713/cma.v11i3.1404

Issue

Section

Research Article