On Hyperbolic Numbers With Generalized Fibonacci Numbers Components
DOI:
https://doi.org/10.26713/cma.v12i4.1396Keywords:
Fibonacci numbers, Lucas numbers, Hyperbolic numbers, Hyperbolic Fibonacci numbers, Cassini identityAbstract
In this paper, we introduce the generalized hyperbolic Fibonacci numbers over the bidimensional Clifford algebra of hyperbolic numbers. As special cases, we deal with hyperbolic Fibonacci and hyperbolic Lucas numbers. We present Binet’s formulas, generating functions and the summation formulas for these numbers. Moreover, we give Catalan’s, Cassini’s, d’Ocagne’s, Gelin-Cesàro’s, Melham’s identities and present matrices related with these sequences.
Downloads
References
F. T. Aydın, Hyperbolic Fibonacci sequence, Universal Journal of Mathematics and Applications 2(2) (2019), 59 – 64, DOI: 10.32323/ujma.473514.
M. Akar, S. Yüce and S. Sahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, Journal of Computer Science & Computational Mathematics 8(1) (2018), 1 – 6, DOI: 10.20967/jcscm.2018.01.001.
J. C. Baez, The octonions, Bulletin of the American Mathematical Society 39(2) (2002), 145 – 205, DOI: 10.1090/S0273-0979-01-00934-X.
D. K. Biss, D. Dugger and D. C. Isaksen, Large annihilators in Cayley-Dickson algebras, Communication in Algebra 36(2) (2008), 632 – 664, DOI: 10.1080/00927870701724094.
H. H. Cheng and S. Thompson, Dual polynomials and complex dual numbers for analysis of spatial mechanisms, Proceedings of the ASME 24th Biennial Mechanisms Conference, Irvine, CA, August 19-22, 1996, DOI: 10.1115/96-DETC/MECH-1221.
J. Cockle, III. On a new imaginary in algebra, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Series 3) 34 (1849), 37 – 47, DOI: 10.1080/14786444908646169.
C. M. Dikmen, Hyperbolic jacobsthal numbers, Asian Research Journal of Mathematics 15(4) (2019), 1 – 9, DOI: 10.9734/arjom/2019/v15i430153.
P. Fjelstad and S. G. Gal, n-Dimensional hyperbolic complex numbers, Advances in Applied Clifford Algebras 8 (1998), 47 – 68, DOI: 10.1007/BF03041925.
W. R. Hamilton, Elements of Quaternions, Chelsea Publishing Company, New York (1969).
K. Imaeda and M. Imaeda, Sedenions: algebra and analysis, Applied Mathematics and Computation 115 (2000), 77 – 88, DOI: 10.1016/S0096-3003(99)00140-X.
B. Jancewicz, The extended Grassmann algebra of R3, in: Clifford (Geometric) Algebras, W. E. Baylis (editor), Birkhäuser Boston, 389 – 421, 1996, DOI: 10.1007/978-1-4612-4104-1_28.
I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers, Springer-Verlag, New York (1989).
A. Khrennikov and G. Segre, An Introduction to Hyperbolic Analysis, Arxiv, URL: http://arxiv.org/abs/math-ph/0507053v2 (2005).
V. V. Kravchenko, Hyperbolic numbers and analytic functions, in: Applied Pseudoanalytic Function Theory Frontiers in Mathematics Sereis, pp 121 – 123, Birkhäuser Basel (2009), DOI: 10.1007/978-3-0346-0004-0_11.
G. Moreno, The zero divisors of the Cayley-Dickson algebras over the real numbers, Boletín de la Sociedad Matemática Mexicana (Series 3) 4 (1998), 13 – 28.
A. E. Motter and A. F. Rosa, Hyperbolic calculus, Advances in Applied Clifford Algebras 8(1) (1998), 109 – 128, DOI: 10.1007/BF03041929.
N. J. A. Sloane, The on-line encyclopedia of integer sequences, URL: http://oeis.org/, accessed: Febraury 15, 2020.
G. Sobczyk, The hyperbolic number plane, The College Mathematics Journal 26(4) (1995), 268 – 280, DOI: 10.1080/07468342.1995.11973712.
G. Sobczyk, Complex and hyperbolic numbers, in: New Foundations in Mathematics, Birkhäuser Boston, pp. 23–42, 2013, DOI: 10.1007/978-0-8176-8385-6_2.
Y. Soykan, Tribonacci and tribonacci-Lucas sedenions, Mathematics 7(1) (2019), 74, DOI: 10.3390/math7010074.
Y. Soykan, On summing formulas for generalized fibonacci and Gaussian generalized fibonacci numbers, Advances in Research 20(2) (2019), 1 – 15, DOI: 10.9734/air/2019/v20i230154.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.