On Hyperbolic Numbers With Generalized Fibonacci Numbers Components

Authors

DOI:

https://doi.org/10.26713/cma.v12i4.1396

Keywords:

Fibonacci numbers, Lucas numbers, Hyperbolic numbers, Hyperbolic Fibonacci numbers, Cassini identity

Abstract

In this paper, we introduce the generalized hyperbolic Fibonacci numbers over the bidimensional Clifford algebra of hyperbolic numbers. As special cases, we deal with hyperbolic Fibonacci and hyperbolic Lucas numbers. We present Binet’s formulas, generating functions and the summation formulas for these numbers. Moreover, we give Catalan’s, Cassini’s, d’Ocagne’s, Gelin-Cesàro’s, Melham’s identities and present matrices related with these sequences.

Downloads

Download data is not yet available.

References

F. T. Aydın, Hyperbolic Fibonacci sequence, Universal Journal of Mathematics and Applications 2(2) (2019), 59 – 64, DOI: 10.32323/ujma.473514.

M. Akar, S. Yüce and S. Sahin, On the dual hyperbolic numbers and the complex hyperbolic numbers, Journal of Computer Science & Computational Mathematics 8(1) (2018), 1 – 6, DOI: 10.20967/jcscm.2018.01.001.

J. C. Baez, The octonions, Bulletin of the American Mathematical Society 39(2) (2002), 145 – 205, DOI: 10.1090/S0273-0979-01-00934-X.

D. K. Biss, D. Dugger and D. C. Isaksen, Large annihilators in Cayley-Dickson algebras, Communication in Algebra 36(2) (2008), 632 – 664, DOI: 10.1080/00927870701724094.

H. H. Cheng and S. Thompson, Dual polynomials and complex dual numbers for analysis of spatial mechanisms, Proceedings of the ASME 24th Biennial Mechanisms Conference, Irvine, CA, August 19-22, 1996, DOI: 10.1115/96-DETC/MECH-1221.

J. Cockle, III. On a new imaginary in algebra, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Series 3) 34 (1849), 37 – 47, DOI: 10.1080/14786444908646169.

C. M. Dikmen, Hyperbolic jacobsthal numbers, Asian Research Journal of Mathematics 15(4) (2019), 1 – 9, DOI: 10.9734/arjom/2019/v15i430153.

P. Fjelstad and S. G. Gal, n-Dimensional hyperbolic complex numbers, Advances in Applied Clifford Algebras 8 (1998), 47 – 68, DOI: 10.1007/BF03041925.

W. R. Hamilton, Elements of Quaternions, Chelsea Publishing Company, New York (1969).

K. Imaeda and M. Imaeda, Sedenions: algebra and analysis, Applied Mathematics and Computation 115 (2000), 77 – 88, DOI: 10.1016/S0096-3003(99)00140-X.

B. Jancewicz, The extended Grassmann algebra of R3, in: Clifford (Geometric) Algebras, W. E. Baylis (editor), Birkhäuser Boston, 389 – 421, 1996, DOI: 10.1007/978-1-4612-4104-1_28.

I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers, Springer-Verlag, New York (1989).

A. Khrennikov and G. Segre, An Introduction to Hyperbolic Analysis, Arxiv, URL: http://arxiv.org/abs/math-ph/0507053v2 (2005).

V. V. Kravchenko, Hyperbolic numbers and analytic functions, in: Applied Pseudoanalytic Function Theory Frontiers in Mathematics Sereis, pp 121 – 123, Birkhäuser Basel (2009), DOI: 10.1007/978-3-0346-0004-0_11.

G. Moreno, The zero divisors of the Cayley-Dickson algebras over the real numbers, Boletín de la Sociedad Matemática Mexicana (Series 3) 4 (1998), 13 – 28.

A. E. Motter and A. F. Rosa, Hyperbolic calculus, Advances in Applied Clifford Algebras 8(1) (1998), 109 – 128, DOI: 10.1007/BF03041929.

N. J. A. Sloane, The on-line encyclopedia of integer sequences, URL: http://oeis.org/, accessed: Febraury 15, 2020.

G. Sobczyk, The hyperbolic number plane, The College Mathematics Journal 26(4) (1995), 268 – 280, DOI: 10.1080/07468342.1995.11973712.

G. Sobczyk, Complex and hyperbolic numbers, in: New Foundations in Mathematics, Birkhäuser Boston, pp. 23–42, 2013, DOI: 10.1007/978-0-8176-8385-6_2.

Y. Soykan, Tribonacci and tribonacci-Lucas sedenions, Mathematics 7(1) (2019), 74, DOI: 10.3390/math7010074.

Y. Soykan, On summing formulas for generalized fibonacci and Gaussian generalized fibonacci numbers, Advances in Research 20(2) (2019), 1 – 15, DOI: 10.9734/air/2019/v20i230154.

Downloads

Published

13-12-2021
CITATION

How to Cite

Soykan, Y. (2021). On Hyperbolic Numbers With Generalized Fibonacci Numbers Components. Communications in Mathematics and Applications, 12(4), 987–1004. https://doi.org/10.26713/cma.v12i4.1396

Issue

Section

Research Article