On the Stabilization of A Flexible Cable with Boundary Feedback

Authors

  • Touré K. Augustin Institut National Polytechnique Houphout-Boigny de Yamoussoukro, BP 1093 Yamoussoukro, Cí´te d'Ivoire
  • Mensah E. Patrice Institut National Polytechnique Houphout-Boigny de Yamoussoukro, BP 1093 Yamoussoukro, Cí´te d'Ivoire
  • Taha M. Mathurin Institut National Polytechnique Houphout-Boigny de Yamoussoukro, BP 1093 Yamoussoukro, Cí´te d'Ivoire

DOI:

https://doi.org/10.26713/cma.v2i2-3.136

Keywords:

Hyperbolic boundary value problem, Exponential stability, Asymptotic behavior, Semigroup theory

Abstract

In this paper we study the stability of a flexible cable that is clamped at one end and free at the other. To stabilize this system we apply a control force in position and velocity at the free end of the cable. We prove that the closed-loop system is well-posed and is exponentially stable. We then analyze the spectrum of the system. Using a method due to Shkalikov we prove that the spectrum determines the exponential decay rate of the energy under certain conditions.

Downloads

Download data is not yet available.

Downloads

Published

28-12-2011
CITATION

How to Cite

Augustin, T. K., Patrice, M. E., & Mathurin, T. M. (2011). On the Stabilization of A Flexible Cable with Boundary Feedback. Communications in Mathematics and Applications, 2(2-3), 111–129. https://doi.org/10.26713/cma.v2i2-3.136

Issue

Section

Research Article