On Eigenvalues of Hermitian-Adjacency Matrix

Authors

  • Olayiwola Babarinsa Faculty of Bioengineering & Technology, Universiti Malaysia Kelantan, 16100 Kota Bharu, Kelantan, Malaysia; Department of Mathematical Sciences, Federal University Lokoja, 1154 Kogi State, Nigeria
  • Azfi Zaidi Mohammad Sofi Faculty of Bioengineering & Technology, Universiti Malaysia Kelantan, 16100 Kota Bharu, Kelantan
  • Mohd Asrul Hery Ibrahim Faculty of Bioengineering & Technology, Universiti Malaysia Kelantan, 16100 Kota Bharu, Kelantan
  • Hailiza Kamarulhaili School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang
  • Dlal Bashir School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang

DOI:

https://doi.org/10.26713/cma.v11i2.1348

Keywords:

Eigenvalues, Hermitian-adjacency matrix, Mixed graph, Hamiltonian cycle

Abstract

The graph of Hermitian-adjacency matrix is a mixed graph consisting adjacency matrix of an undirected graph and skew-adjacency matrix of a digraph. In this paper we discuss eigenvalues of Hermitian-adjacency matrix. Then we use the eigenvalues to determine the possible Hamiltonian cycles of its graph.

Downloads

Download data is not yet available.

References

C. Adiga, B. Rakshith, W. So, The skew energy of a digraph, Linear Algebra Appl. 432(7) (2010), 1825-1835. doi.org/10.1016/j.laa.2009.11.034

C. Adiga, B. Rakshith, W. So, On the mixed adjacency matrix of a mixed graph, Linear Algebra Appl. 495 (2016), 223-241. doi.org/10.1016/j.laa.2016.01.033

S. Arumugam, A. Brandstdt, T. Nishizeki, K. Thulasiraman, Handbook of graph theory, combinatorial optimization, and algorithms, Chapman and Hall/CRC (2016) .

O. Babarinsa, H. Kamarulhaili, Mixed Energy of a Mixed Hourglass Graph, Comm. Math. Appl. 10(1) (2019), 45-53.

A. Bharali, On First Hermitian-Zagreb Matrix and Hermitian-Zagreb Energy, Int. J. Sci. Res. in Mathematical and Statistical Sciences 5(3) (2018), 136-139.

P. Bhat, S. D'Souza, Color signless Laplacian energy of graphs, AKCE International Journal of Graphs and Combinatorics 14(2) (2017), 142-148. doi.org/10.1016/j.akcej.2017.02.003

C. Adiga, B. Rakshith, W. So, On the mixed adjacency matrix of a mixed graph, Linear Algebra Appl. 495 (2016), 223-241. doi.org/10.1016/j.laa.2016.01.033

X. Chen, X. Li, Y. Zhang, 3-regular mixed graphs with optimum Hermitian energy, Linear Algebra Appl. 496 (2016), 475-486. doi.org/10.1016/j.laa.2016.02.012

K. Guo, B. Mohar, Hermitian adjacency matrix of digraphs and mixed graphs, J. Graph Theory. 85(1) (2017), 217-248. doi.org/10.1002/jgt.22057

I. Gutman, F. Boris, Survey of graph energies, Math. Interdisc. Res 2, (2017), 85-129.

I. Gutman, B. Zhou, Survey of graph energies, Linear Algebra Appl., 414 (2006), 29-37. doi.org/10.1016/j.laa.2005.09.008

Y. Hou, T. Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, Electron. J. Comb 18(1) (2011), 156-167.

J. Liu, X. Li, Hermitian-adjacency matrices and hermitian energies of mixed graphs, Linear Algebra Appl. 466 (2015), 182-207. doi.org/10.1016/j.laa.2014.10.028

K. Rosen, K. Krithivasan, Discrete mathematics and its applications, (McGraw-Hill Education, Singapore 2015).

F. Tian, D. Wong, Nullity of Hermitian-Adjacency Matrices of Mixed Graphs, Journal of Mathematical Research with Applications 38(1) (2018), 23-33. doi.org/10.3770/j.issn:2095-2651.2018.01.002

G. Yu, H. Qu, Hermitian laplacian matrix and positive of mixed graphs, Appl. Math. Comput. 269 (2015), 70-76. doi.org/10.1016/j.amc.2015.07.045

G. Yu, X. Liu, H. Qu, Singularity of Hermitian (quasi-) Laplacian matrix of mixed graphs, Appl. Math. Comput. 293 (2017), 287-292. doi.org/10.1016/j.amc.2016.08.032

J. Zhang, D. Xiao, R. Luo, The Laplacian eigenvalues of mixed graphs, Linear Algebra Appl. 362 (2003), 109-119. doi.org/10.1016/S0024-3795(02)00509-8

J. Zhang, H. Kan, On the minimal energy of graphs, Linear Algebra Appl. 453 (2014), 141-153. doi.org/10.1016/j.laa.2014.04.009

Downloads

Published

30-06-2020
CITATION

How to Cite

Babarinsa, O., Mohammad Sofi, A. Z., Ibrahim, M. A. H., Kamarulhaili, H., & Bashir, D. (2020). On Eigenvalues of Hermitian-Adjacency Matrix. Communications in Mathematics and Applications, 11(2), 215–220. https://doi.org/10.26713/cma.v11i2.1348

Issue

Section

Research Article