Spectral Analysis of Klein-Gordon Difference Operator Given by a General Boundary Condition

Authors

  • Nihal Yokus Department of Mathematics, Karamanoglu Mehmetbey University, 70100, Karaman
  • Nimet Coskun Department of Mathematics, Karamanoglu Mehmetbey University, 70100, Karaman

DOI:

https://doi.org/10.26713/cma.v11i2.1328

Keywords:

Eigenparameter, Spectral analysis, Eigenvalues, Spectral singularities, Discrete equation, Klein-Gordon equation

Abstract

In this study, we consider the spectral properties of the non-selfadjoint difference operator \(L\) generated in \(l_2(\mathbb{N})\) by the difference expression $$ \Delta (a_{n-1}\Delta y_{n-1})+(v_n-\lambda)^2y_n=0, \ \ n \in \mathbb{N},$$ and a general boundary condition $$\sum^\infty_{n=0} h_ny_n=0,$$ where \(a_0 = 1\), \(h_0\neq 0\) and \(\{a_n\}^\infty_{n=1}\), \(\{v_n\}^\infty_{n=1}\) and \(\{h_n\}^\infty_{n=1}\) are complex sequences and \(\{h_n\}^\infty_{n=1}\in l_1(\mathbb{N})\cap l_2(\mathbb{N})\). Along with the designation of the sets of eigenvalues and spectral singularities of the operator \(L\), we investigate the quantitative properties of these sets under certain conditions using the uniqueness theorems of analytic functions.

Downloads

Download data is not yet available.

References

M. Adivar, Quadratic pencil of difference equations: Jost solutions, spectrum, and principal vectors, Quaestiones Mathematicae 33 (2010), 305 – 323, DOI: 10.2989/16073606.2010.507323.

M. Adivar and E. Bairamov, Difference equations of second order with spectral singularities, Journal of Mathematical Analysis and Applications 277 (2003), 714 – 721, DOI: 10.1016/S0022-247X(02)00655-8.

N. I. Akhiezer, The classical moment problem and some related questiones in analysis, First English Edition Translation 1965, Oliver and Boyd, Edinburgh and London, https://books.google.co.in/books?id=OvZvAAAAIAAJ&dq=editions:OCLC251400351.

E. Bairamov, O. Cakar and A. O. Celebi, Quadratic pencil of Schrödinger operators with spectral singularities: Discrete spectrum and principal functions, Journal of Mathematical Analysis and Applications 216 (1997), 303 – 320, DOI: 10.1006/jmaa.1997.5689.

E. Bairamov, O. Cakar and A. M. Krall, Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Mathematische Nachrichten 229 (2001), 5 – 1, DOI: 10.1002/1522-2616(200109)229:1%3C5::AID-MANA5%3E3.0.CO;2-C.

E. Bairamov and A. O. Celebi, Spectral properties of the Klein-Gordon s-wave equation with complex potential, Indian Journal of Pure & Applied Mathematics 28 (1997), 813 – 824, https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a19_813.pdf.

E. Bairamov and O. Karaman, Spectral singularities of Klein-Gordon s-wave equations with an integral boundary condition, Acta Mathematica Hungarica 97 (1-2) (2002), 121 – 131, DOI: 10.1023/A:1020815113773.

E. Bairamov and N. Yokus, Spectral singularities of Sturm-Liouville problems with eigenvaluedependent boundary conditions, Abstract and Applied Analysis 2009 (2009) Article ID 289596, 8 pages, DOI: 10.1155/2009/289596.

G. Bascanbaz-Tunca, Spectral properties of a Schrödinger equation with a class of complex potentials and a general boundary condition, Journal of Mathematical Analysis and Applications 286 (2003), 207 – 219, DOI: 10.1016/S0022-247X(03)00472-4.

N. Coskun and N. Yokus, A Note on the spectrum of discrete Klein-Gordon s-wave equation with eigenparameter dependent boundary condition, Filomat 33(2) (2019), 449 – 455, DOI: 10.2298/FIL1902449C.

E. P. Dolzhenko, Boundary value uniqueness theorems for analytic functions, Mathematical Notes 25 (1979), 437 – 442, DOI: 10.1007/BF01230985.

G. S. Guseinov, The determination of an infinite Jacobi matrix from the scattering data, Doklady Akademii Nauk SSSR (DAN SSSR) 227(6) (1976), 1289 – 1292; English translation in Soviet Mathematics - Doklady 17 (1976), 1045 – 1048, http://mi.mathnet.ru/eng/dan40300.

T. Koprubasi and N. Yokus, Quadratic eigen parameter dependent discrete Sturm-Liouville equations with spectral singularities, Applied Mathematics and Computation 244 (2014), 57 – 62, DOI: 10.1016/j.amc.2014.06.072.

A. M. Krall, A nonhomogeneous eigenfunction expansion, Transactions of the American Mathematical Society 117 (1965), 352 – 361, https://www.jstor.org/stable/1994212.

A. M. Krall, The adjoint of differential operator with integral boundary conditions, Proceedings of the American Mathematical Society 16 (1965), 738 – 742, DOI: 10.1090/S0002-9939-1965-0181794-9.

A. M. Krall, E. Bairamov and O. Cakar, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, Journal of Differential Equations 151 (1999), 252 – 267, DOI: 10.1006/jdeq.1998.3519.

M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of second order on a semi-axis, AMS Transl. 2 (1960), 103 – 193, https://books.google.co.in/books?hl=en&lr=&id=6U-uz-3JzRQC&oi=fnd&pg=PA103&ots=eGr5ZIjJh5&sig=mt8-IzgSoXg55hg41GS7C1vT0jw&redir_esc=y#v=onepage&q&f=false.

M. A. Naimark, Linear Differential Operators I, II, Ungar, New York (1968), https://www.infona.pl/resource/bwmeta1.element.springer-6be986fa-8081-3d39-bb8b-8f504cfc470f/tab/summary.

C. R. Oliveira, Intermediate Spectral Theory and Quantum Dynamics, Progress in Mathematical Physics, Vol. 54, Birkhauser (2009), https://www.infona.pl/resource/bwmeta1.element.springer-6be986fa-8081-3d39-bb8b-8f504cfc470f/tab/summary.

G. Teschl, Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, Vol. 72, American Mathematical Society (2000), DOI: https://pdfs.semanticscholar.org/f2e6/968dcf7f1150c7df1e16d852abbd455ce00a.pdf.

N. Yokus and T. Koprubasi, Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter, Journal of Inequalities and Applications 1 (2015), 42, DOI: 10.1186/s13660-015-0563-1.

N. Yokus and N. Coskun, Spectral analysis of quantum Dirac systems, Journal of Nonlinear Sciences and Applications 10(8) (2017), 4524 – 4531, DOI: 10.22436/jnsa.010.08.44.

N. Yokus and N. Coskun, A note on the matrix Sturm-Liouville operators with principal functions, Mathematical Methods in the Applied Sciences 42 (16) (2019), 5362 – 5370, DOI: 10.1002/mma.5383.

N. Yokus and N. Coskun, Spectral properties of discrete Klein–Gordon s-wave equation with quadratic eigenparameter-dependent boundary condition, Iranian Journal of Science and Technology, Transactions A: Science 43 (2019), 1951 – 1955, DOI: 10.1007/s40995-018-00672-3.

Downloads

Published

30-06-2020
CITATION

How to Cite

Yokus, N., & Coskun, N. (2020). Spectral Analysis of Klein-Gordon Difference Operator Given by a General Boundary Condition. Communications in Mathematics and Applications, 11(2), 271–279. https://doi.org/10.26713/cma.v11i2.1328

Issue

Section

Research Article