Spectral Analysis of Klein-Gordon Difference Operator Given by a General Boundary Condition
DOI:
https://doi.org/10.26713/cma.v11i2.1328Keywords:
Eigenparameter, Spectral analysis, Eigenvalues, Spectral singularities, Discrete equation, Klein-Gordon equationAbstract
In this study, we consider the spectral properties of the non-selfadjoint difference operator \(L\) generated in \(l_2(\mathbb{N})\) by the difference expression $$ \Delta (a_{n-1}\Delta y_{n-1})+(v_n-\lambda)^2y_n=0, \ \ n \in \mathbb{N},$$ and a general boundary condition $$\sum^\infty_{n=0} h_ny_n=0,$$ where \(a_0 = 1\), \(h_0\neq 0\) and \(\{a_n\}^\infty_{n=1}\), \(\{v_n\}^\infty_{n=1}\) and \(\{h_n\}^\infty_{n=1}\) are complex sequences and \(\{h_n\}^\infty_{n=1}\in l_1(\mathbb{N})\cap l_2(\mathbb{N})\). Along with the designation of the sets of eigenvalues and spectral singularities of the operator \(L\), we investigate the quantitative properties of these sets under certain conditions using the uniqueness theorems of analytic functions.
Downloads
References
M. Adivar, Quadratic pencil of difference equations: Jost solutions, spectrum, and principal vectors, Quaestiones Mathematicae 33 (2010), 305 – 323, DOI: 10.2989/16073606.2010.507323.
M. Adivar and E. Bairamov, Difference equations of second order with spectral singularities, Journal of Mathematical Analysis and Applications 277 (2003), 714 – 721, DOI: 10.1016/S0022-247X(02)00655-8.
N. I. Akhiezer, The classical moment problem and some related questiones in analysis, First English Edition Translation 1965, Oliver and Boyd, Edinburgh and London, https://books.google.co.in/books?id=OvZvAAAAIAAJ&dq=editions:OCLC251400351.
E. Bairamov, O. Cakar and A. O. Celebi, Quadratic pencil of Schrödinger operators with spectral singularities: Discrete spectrum and principal functions, Journal of Mathematical Analysis and Applications 216 (1997), 303 – 320, DOI: 10.1006/jmaa.1997.5689.
E. Bairamov, O. Cakar and A. M. Krall, Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Mathematische Nachrichten 229 (2001), 5 – 1, DOI: 10.1002/1522-2616(200109)229:1%3C5::AID-MANA5%3E3.0.CO;2-C.
E. Bairamov and A. O. Celebi, Spectral properties of the Klein-Gordon s-wave equation with complex potential, Indian Journal of Pure & Applied Mathematics 28 (1997), 813 – 824, https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a19_813.pdf.
E. Bairamov and O. Karaman, Spectral singularities of Klein-Gordon s-wave equations with an integral boundary condition, Acta Mathematica Hungarica 97 (1-2) (2002), 121 – 131, DOI: 10.1023/A:1020815113773.
E. Bairamov and N. Yokus, Spectral singularities of Sturm-Liouville problems with eigenvaluedependent boundary conditions, Abstract and Applied Analysis 2009 (2009) Article ID 289596, 8 pages, DOI: 10.1155/2009/289596.
G. Bascanbaz-Tunca, Spectral properties of a Schrödinger equation with a class of complex potentials and a general boundary condition, Journal of Mathematical Analysis and Applications 286 (2003), 207 – 219, DOI: 10.1016/S0022-247X(03)00472-4.
N. Coskun and N. Yokus, A Note on the spectrum of discrete Klein-Gordon s-wave equation with eigenparameter dependent boundary condition, Filomat 33(2) (2019), 449 – 455, DOI: 10.2298/FIL1902449C.
E. P. Dolzhenko, Boundary value uniqueness theorems for analytic functions, Mathematical Notes 25 (1979), 437 – 442, DOI: 10.1007/BF01230985.
G. S. Guseinov, The determination of an infinite Jacobi matrix from the scattering data, Doklady Akademii Nauk SSSR (DAN SSSR) 227(6) (1976), 1289 – 1292; English translation in Soviet Mathematics - Doklady 17 (1976), 1045 – 1048, http://mi.mathnet.ru/eng/dan40300.
T. Koprubasi and N. Yokus, Quadratic eigen parameter dependent discrete Sturm-Liouville equations with spectral singularities, Applied Mathematics and Computation 244 (2014), 57 – 62, DOI: 10.1016/j.amc.2014.06.072.
A. M. Krall, A nonhomogeneous eigenfunction expansion, Transactions of the American Mathematical Society 117 (1965), 352 – 361, https://www.jstor.org/stable/1994212.
A. M. Krall, The adjoint of differential operator with integral boundary conditions, Proceedings of the American Mathematical Society 16 (1965), 738 – 742, DOI: 10.1090/S0002-9939-1965-0181794-9.
A. M. Krall, E. Bairamov and O. Cakar, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, Journal of Differential Equations 151 (1999), 252 – 267, DOI: 10.1006/jdeq.1998.3519.
M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of second order on a semi-axis, AMS Transl. 2 (1960), 103 – 193, https://books.google.co.in/books?hl=en&lr=&id=6U-uz-3JzRQC&oi=fnd&pg=PA103&ots=eGr5ZIjJh5&sig=mt8-IzgSoXg55hg41GS7C1vT0jw&redir_esc=y#v=onepage&q&f=false.
M. A. Naimark, Linear Differential Operators I, II, Ungar, New York (1968), https://www.infona.pl/resource/bwmeta1.element.springer-6be986fa-8081-3d39-bb8b-8f504cfc470f/tab/summary.
C. R. Oliveira, Intermediate Spectral Theory and Quantum Dynamics, Progress in Mathematical Physics, Vol. 54, Birkhauser (2009), https://www.infona.pl/resource/bwmeta1.element.springer-6be986fa-8081-3d39-bb8b-8f504cfc470f/tab/summary.
G. Teschl, Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, Vol. 72, American Mathematical Society (2000), DOI: https://pdfs.semanticscholar.org/f2e6/968dcf7f1150c7df1e16d852abbd455ce00a.pdf.
N. Yokus and T. Koprubasi, Spectrum of the Sturm-Liouville operators with boundary conditions polynomially dependent on the spectral parameter, Journal of Inequalities and Applications 1 (2015), 42, DOI: 10.1186/s13660-015-0563-1.
N. Yokus and N. Coskun, Spectral analysis of quantum Dirac systems, Journal of Nonlinear Sciences and Applications 10(8) (2017), 4524 – 4531, DOI: 10.22436/jnsa.010.08.44.
N. Yokus and N. Coskun, A note on the matrix Sturm-Liouville operators with principal functions, Mathematical Methods in the Applied Sciences 42 (16) (2019), 5362 – 5370, DOI: 10.1002/mma.5383.
N. Yokus and N. Coskun, Spectral properties of discrete Klein–Gordon s-wave equation with quadratic eigenparameter-dependent boundary condition, Iranian Journal of Science and Technology, Transactions A: Science 43 (2019), 1951 – 1955, DOI: 10.1007/s40995-018-00672-3.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.