Generalized Apostol Type Polynomials Based on Twin-Basic Numbers
DOI:
https://doi.org/10.26713/cma.v11i1.1327Keywords:
\((p, q)\)-calculus, Apostol-Bernoulli polynomials, Apostol-Euler polynomials, Apostol-Genocchi polynomials, Stirling numbers of second kind, Bernstein polynomials, Gamma function, Generating function, Cauchy productAbstract
In this work, we consider a class of new generating function for \((p,q)\)-analog of Apostol type polynomials of order \(\alpha\) including Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials of order \(\alpha\). By making use of their generating function, we derive some useful identities. We also introduce the generating functions of \((p,q)\)-analogues of the Stirling numbers of second kind of order \(\tau\) and the Bernstein polynomials by which we construct diverse correlations including aforementioned polynomials and the \((p,q)\)-gamma function.Downloads
References
M. Acikgoz and S. Araci, On the generating function for Bernstein polynomials, AIP Conference Proceedings 1281 (2010), 1141, DOI: 10.1063/1.3497855.
E. Agyuz and M. Acikgoz, A note on (p, q)-Bernstein polynomials and their applications based on (p, q)-calculus, Journal of Inequalities and Applications 2018 (2018), Article number 81, DOI: 10.1186/s13660-018-1673-3.
T. M. Apostol, On the Lerch zeta function, Pacific Journal of Mathematics 1 (1951), 161 – 167, https://projecteuclid.org/euclid.pjm/1103052188.
S. Araci, U. Duran, M. Acikgoz and H. M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, Journal of Inequalities and Applications 2016 (2016), Article number 301, DOI: 10.1186/s13660-016-1240-8.
L. Castilla and W. Ramírez and A. Urieles, An extended generalized q-extension for the Apostol type polynomials, Abstract and Applied Analysis 2018 (2018), Article ID 2937950, 13 pages, DOI: 10.1155/2018/2937950.
R. Chakrabarti and R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, Journal of Physics A: Mathematical and General 24 (1991), L711, DOI: 10.1088/0305-4470/24/13/002.
J. Choi, P. J. Anderson and H. M. Srivastava, Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function, Applied Mathematics and Computation 199 (2008), 723 – 737, DOI: 10.1016/j.amc.2007.10.033.
R. Dere, Y. Simsek and H. M. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, Journal of Number Theory 133(10) (2013), 3245 – 3263, DOI: 10.1016/j.jnt.2013.03.004.
U. Duran and M. Acikgoz, Apostol type (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials and numbers, Communications in Mathematics & Applications 8(1) (2017), 7 – 30, DOI: 10.26713/cma.v8i1.512.
U. Duran, M. Acikgoz and S. Araci, On generalized some polynomials based on (p, q)-numbers, Journal of Mathematics and Statistics 14(2) (2018), 129 – 140, DOI: 10.3844/jmssp.2018.129.140.
U. Duran, M. Acikgoz and S. Araci, Unified (p, q)-analog of Apostol type polynomials of order (alpha), Filomat 32(2) (2018), 387 – 394, DOI: 10.2298/FIL1802387D.
B. S. El-Desouky and R. S. Gomaa, A new unified family of generalized Apostol-Euler, Bernoulli and Genocchi polynomials, Applied Mathematics and Computation 247 (2014), 695 – 702, DOI: 10.1016/j.amc.2014.09.002.
Y. He, S. Araci, H. M. Srivastava and M. Acikgoz, Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Applied Mathematics and Computation 262 (2015), 31 – 41, DOI: 10.1016/j.amc.2015.03.132.
T. Komatsu, A (p, q)-analogue of poly-Euler polynomials and some related polynomials, 2016, arXiv:1604.03787v1 [math.NT], https://arxiv.org/abs/1604.03787.
B. Kurt, Notes on unified q-Apostol-type polynomials, Filomat 30(4) (2016), 921 – 927, https: //www.jstor.org/stable/24898659?seq=1.
B. Kurt, Some relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials, Turkish Journal of Analysis and Number Theory 1(1) (2013), 54 – 58, DOI: 10.12691/tjant-1-1-11.
B. Kurt, Unified laguerre-based poly-Apostol-type polynomials, International Journal of Advanced and Applied Sciences 4(12) (2017), 145 – 150, DOI: 10.21833/ijaas.2017.012.025.
V. Kurt, Some Symmetry identities for the unified Apostol-type polynomials and multiple power sums, Filomat 30(3) (2016), 583 – 592, https://www.jstor.org/stable/24898624?seq=1.
D.-Q. Lu and H. M. Srivastava, Some series identities involving the generalized Apostol type and related polynomials, Computers & Mathematics with Applications 62 (2011), 3591 – 3602, DOI: 10.1016/j.camwa.2011.09.010.
Q.-M. Luo and H. M. Srivastava, q-extension of some relationships between the Bernoulli and Euler polynomials, Taiwanese Journal of Mathematics 15(1) (2011), 241 – 257, DOI: 10.11650/twjm/1500406173.
Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, Journal of Mathematical Analysis and Applications 308 (2005), 290 – 302, DOI: 10.1016/j.jmaa.2005.01.020.
Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Applied Mathematics and Computation 217 (2011), 5702 – 5728, DOI: 10.1016/j.amc.2010.12.048.
Q.-M. Luo and H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Computers & Mathematics with Applications 51 (2006), 631 – 642, DOI: 10.1016/j.camwa.2005.04.018.
N. I. Mahmudov and M. E. Keleshteri, q-extension for the Apostol type polynomials, Journal of Applied Mathematics 2014 (2014), ID 868167, 8 pages, DOI: 10.1155/2014/868167.
N. I. Mahmudov, q-Analogues of the Bernoulli and Genocchi polynomials and the Srivastava-Pintér addition theorems, Discrete Dynamics in Nature and Society 2012 (2012), Article ID 169348, 8 pages, DOI: 10.1155/2012/169348.
N. I. Mahmudov, On a class of q-Benoulli and q-Euler polynomials, Advances in Difference Equations 2013 (2013), Article number 108, DOI: 10.1186/1687-1847-2013-108.
M. Mursaleen, K. J. Ansari and A. Khan, On (p, q)-analogue of Bernstein Operators, Applied Mathematics and Computation 266 (2015), 874 – 882, DOI: 10.1016/j.amc.2015.04.090 [Erratum: Applied Mathematics and Computation 278 (2016), 70 – 71, DOI: 10.1016/j.amc.2016.02.008].
P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, Journal of Applied Mathematics 2003 (2003), Article ID 794908, 9 pages, DOI: 10.1155/S1110757X03204101.
M. A. í–zarslan, Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials, Advances in Difference Equations 2013 (2013), Article number 116, DOI: 10.1186/1687-1847-2013-116.
M. A. í–zarslan, Unified Apostol-Bernoulli, Euler and Genochi polynomials, Computers & Mathematics with Applications 62 (2011), 2452 – 2462, DOI: 10.1016/j.camwa.2011.07.031.
H. Ozden, Y. Simsek and H. M. Srivastava, A unified presentation of the generating function of the generalized Bernoulli, Euler and Genocchi polynomials, Computers & Mathematics with Applications 60(10) (2010), 2779 – 2789, DOI: 10.1016/j.camwa.2010.09.031.
P. N. Sadjang, On the (p, q)-Gamma and the (p, q)-Beta functions, 8 pages, arXiv:1506.07394 [math.NT], https://arxiv.org/pdf/1506.07394.pdf.
P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results in Mathematics 2018 (2018),73:39, DOI: 10.1007/s00025-018-0783-z.
H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Mathematical Proceedings of the Cambridge Philosophical Society 129 (2000), 77 – 84, DOI: 10.1017/S0305004100004412.
H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Applied Mathematics & Information Sciences 5 (2011), 390 – 444, http://www.naturalspublishing.com/Article.asp?ArtcID=119.
H. M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-Zeta functions and basic L-Series, Russian Journal of Mathematical Physics 12 (2005), 241 – 268.
H. M. Srivastava and A. P´ intér, Remarks on some relationships between the Bernoulli and Euler polynomials, Applied Mathematics Letters 17 (2004), 375 – 380, DOI: 10.1016/S0893-9659(04)90077-8.
H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, The Netherlands, Amsterdam (2012), DOI: 10.1016/C2010-0-67023-4.
H. M. Srivastava, M. Garg and S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russian Journal of Mathematical Physics 17 (2010), 251 – 261, DOI: 10.1134/S1061920810020093.
R. Tremblay, S. Gaboury and J. Fugère, A new class of generalized Apostol-Bernoulli polynomials and some analogues of the Srivastava-Pintér addition theorem, Applied Mathematics Letters 24(11) (2011), 1888 – 1893, DOI: 10.1016/j.aml.2011.05.012.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.