Generalized Apostol Type Polynomials Based on Twin-Basic Numbers

Authors

  • Ugur Duran Department of Basic Sciences of Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Tecnical University, TR-31200 Hatay
  • Mehmet Acikgoz Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep
  • Hemen Dutta Department of Mathematics, Gauhati University, Guwahati 781014, Assam

DOI:

https://doi.org/10.26713/cma.v11i1.1327

Keywords:

\((p, q)\)-calculus, Apostol-Bernoulli polynomials, Apostol-Euler polynomials, Apostol-Genocchi polynomials, Stirling numbers of second kind, Bernstein polynomials, Gamma function, Generating function, Cauchy product

Abstract

In this work, we consider a class of new generating function for \((p,q)\)-analog of Apostol type polynomials of order \(\alpha\) including Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials of order \(\alpha\). By making use of their generating function, we derive some useful identities. We also introduce the generating functions of \((p,q)\)-analogues of the Stirling numbers of second kind of order \(\tau\) and the Bernstein polynomials by which we construct diverse correlations including aforementioned polynomials and the \((p,q)\)-gamma function.

Downloads

Download data is not yet available.

References

M. Acikgoz and S. Araci, On the generating function for Bernstein polynomials, AIP Conference Proceedings 1281 (2010), 1141, DOI: 10.1063/1.3497855.

E. Agyuz and M. Acikgoz, A note on (p, q)-Bernstein polynomials and their applications based on (p, q)-calculus, Journal of Inequalities and Applications 2018 (2018), Article number 81, DOI: 10.1186/s13660-018-1673-3.

T. M. Apostol, On the Lerch zeta function, Pacific Journal of Mathematics 1 (1951), 161 – 167, https://projecteuclid.org/euclid.pjm/1103052188.

S. Araci, U. Duran, M. Acikgoz and H. M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, Journal of Inequalities and Applications 2016 (2016), Article number 301, DOI: 10.1186/s13660-016-1240-8.

L. Castilla and W. Ramí­rez and A. Urieles, An extended generalized q-extension for the Apostol type polynomials, Abstract and Applied Analysis 2018 (2018), Article ID 2937950, 13 pages, DOI: 10.1155/2018/2937950.

R. Chakrabarti and R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, Journal of Physics A: Mathematical and General 24 (1991), L711, DOI: 10.1088/0305-4470/24/13/002.

J. Choi, P. J. Anderson and H. M. Srivastava, Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function, Applied Mathematics and Computation 199 (2008), 723 – 737, DOI: 10.1016/j.amc.2007.10.033.

R. Dere, Y. Simsek and H. M. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, Journal of Number Theory 133(10) (2013), 3245 – 3263, DOI: 10.1016/j.jnt.2013.03.004.

U. Duran and M. Acikgoz, Apostol type (p, q)-Bernoulli, (p, q)-Euler and (p, q)-Genocchi polynomials and numbers, Communications in Mathematics & Applications 8(1) (2017), 7 – 30, DOI: 10.26713/cma.v8i1.512.

U. Duran, M. Acikgoz and S. Araci, On generalized some polynomials based on (p, q)-numbers, Journal of Mathematics and Statistics 14(2) (2018), 129 – 140, DOI: 10.3844/jmssp.2018.129.140.

U. Duran, M. Acikgoz and S. Araci, Unified (p, q)-analog of Apostol type polynomials of order (alpha), Filomat 32(2) (2018), 387 – 394, DOI: 10.2298/FIL1802387D.

B. S. El-Desouky and R. S. Gomaa, A new unified family of generalized Apostol-Euler, Bernoulli and Genocchi polynomials, Applied Mathematics and Computation 247 (2014), 695 – 702, DOI: 10.1016/j.amc.2014.09.002.

Y. He, S. Araci, H. M. Srivastava and M. Acikgoz, Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Applied Mathematics and Computation 262 (2015), 31 – 41, DOI: 10.1016/j.amc.2015.03.132.

T. Komatsu, A (p, q)-analogue of poly-Euler polynomials and some related polynomials, 2016, arXiv:1604.03787v1 [math.NT], https://arxiv.org/abs/1604.03787.

B. Kurt, Notes on unified q-Apostol-type polynomials, Filomat 30(4) (2016), 921 – 927, https: //www.jstor.org/stable/24898659?seq=1.

B. Kurt, Some relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials, Turkish Journal of Analysis and Number Theory 1(1) (2013), 54 – 58, DOI: 10.12691/tjant-1-1-11.

B. Kurt, Unified laguerre-based poly-Apostol-type polynomials, International Journal of Advanced and Applied Sciences 4(12) (2017), 145 – 150, DOI: 10.21833/ijaas.2017.012.025.

V. Kurt, Some Symmetry identities for the unified Apostol-type polynomials and multiple power sums, Filomat 30(3) (2016), 583 – 592, https://www.jstor.org/stable/24898624?seq=1.

D.-Q. Lu and H. M. Srivastava, Some series identities involving the generalized Apostol type and related polynomials, Computers & Mathematics with Applications 62 (2011), 3591 – 3602, DOI: 10.1016/j.camwa.2011.09.010.

Q.-M. Luo and H. M. Srivastava, q-extension of some relationships between the Bernoulli and Euler polynomials, Taiwanese Journal of Mathematics 15(1) (2011), 241 – 257, DOI: 10.11650/twjm/1500406173.

Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, Journal of Mathematical Analysis and Applications 308 (2005), 290 – 302, DOI: 10.1016/j.jmaa.2005.01.020.

Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind, Applied Mathematics and Computation 217 (2011), 5702 – 5728, DOI: 10.1016/j.amc.2010.12.048.

Q.-M. Luo and H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Computers & Mathematics with Applications 51 (2006), 631 – 642, DOI: 10.1016/j.camwa.2005.04.018.

N. I. Mahmudov and M. E. Keleshteri, q-extension for the Apostol type polynomials, Journal of Applied Mathematics 2014 (2014), ID 868167, 8 pages, DOI: 10.1155/2014/868167.

N. I. Mahmudov, q-Analogues of the Bernoulli and Genocchi polynomials and the Srivastava-Pintér addition theorems, Discrete Dynamics in Nature and Society 2012 (2012), Article ID 169348, 8 pages, DOI: 10.1155/2012/169348.

N. I. Mahmudov, On a class of q-Benoulli and q-Euler polynomials, Advances in Difference Equations 2013 (2013), Article number 108, DOI: 10.1186/1687-1847-2013-108.

M. Mursaleen, K. J. Ansari and A. Khan, On (p, q)-analogue of Bernstein Operators, Applied Mathematics and Computation 266 (2015), 874 – 882, DOI: 10.1016/j.amc.2015.04.090 [Erratum: Applied Mathematics and Computation 278 (2016), 70 – 71, DOI: 10.1016/j.amc.2016.02.008].

P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, Journal of Applied Mathematics 2003 (2003), Article ID 794908, 9 pages, DOI: 10.1155/S1110757X03204101.

M. A. í–zarslan, Hermite-based unified Apostol-Bernoulli, Euler and Genocchi polynomials, Advances in Difference Equations 2013 (2013), Article number 116, DOI: 10.1186/1687-1847-2013-116.

M. A. í–zarslan, Unified Apostol-Bernoulli, Euler and Genochi polynomials, Computers & Mathematics with Applications 62 (2011), 2452 – 2462, DOI: 10.1016/j.camwa.2011.07.031.

H. Ozden, Y. Simsek and H. M. Srivastava, A unified presentation of the generating function of the generalized Bernoulli, Euler and Genocchi polynomials, Computers & Mathematics with Applications 60(10) (2010), 2779 – 2789, DOI: 10.1016/j.camwa.2010.09.031.

P. N. Sadjang, On the (p, q)-Gamma and the (p, q)-Beta functions, 8 pages, arXiv:1506.07394 [math.NT], https://arxiv.org/pdf/1506.07394.pdf.

P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results in Mathematics 2018 (2018),73:39, DOI: 10.1007/s00025-018-0783-z.

H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Mathematical Proceedings of the Cambridge Philosophical Society 129 (2000), 77 – 84, DOI: 10.1017/S0305004100004412.

H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Applied Mathematics & Information Sciences 5 (2011), 390 – 444, http://www.naturalspublishing.com/Article.asp?ArtcID=119.

H. M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-Zeta functions and basic L-Series, Russian Journal of Mathematical Physics 12 (2005), 241 – 268.

H. M. Srivastava and A. P´ intér, Remarks on some relationships between the Bernoulli and Euler polynomials, Applied Mathematics Letters 17 (2004), 375 – 380, DOI: 10.1016/S0893-9659(04)90077-8.

H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, The Netherlands, Amsterdam (2012), DOI: 10.1016/C2010-0-67023-4.

H. M. Srivastava, M. Garg and S. Choudhary, A new generalization of the Bernoulli and related polynomials, Russian Journal of Mathematical Physics 17 (2010), 251 – 261, DOI: 10.1134/S1061920810020093.

R. Tremblay, S. Gaboury and J. Fugère, A new class of generalized Apostol-Bernoulli polynomials and some analogues of the Srivastava-Pintér addition theorem, Applied Mathematics Letters 24(11) (2011), 1888 – 1893, DOI: 10.1016/j.aml.2011.05.012.

Downloads

Published

31-03-2020
CITATION

How to Cite

Duran, U., Acikgoz, M., & Dutta, H. (2020). Generalized Apostol Type Polynomials Based on Twin-Basic Numbers. Communications in Mathematics and Applications, 11(1), 65–83. https://doi.org/10.26713/cma.v11i1.1327

Issue

Section

Research Article