Digital Volume Pulse Analysis to Differentiate Diabetic From Non-Diabetic Subjects

Authors

  • Yousef Qawqzeh Department of Computer Science and Information, College of Science at Zulfi, Majmaah University, Majmaah 11952

DOI:

https://doi.org/10.26713/cma.v10i4.1266

Keywords:

DVP, Diabetics type II, Age, HbA1C test, Arterial stiffness

Abstract

This paper aims to examine the validity of digital volume pulse waveform index namely the diastolic pulse peak (Dpp) in the evaluation of type II diabetics. In total, 153 participants (115 healthy participants and 48 diabetics type II patients) are recruited during the study. A customized algorithm for DVP waveform analysis is developed in MATLAB to analyze and calculate Dpp and b/a indices. The b/a index is found to be negatively correlated with both age and HbA1C test (\(r=-83.8\) and \(r=-66.7\), respectively), while Dpp index is found to be positively correlated with age and HbA1C test (\(r=65.7\) and \(r= 63.3\), respectively). The DVP's Dpp index showed strong association with age and HbA1C test since it remains statistically significant based on the analysis of multi-linear regression. The model revealed that b/a, age, and Dpp contribute by 71.9\% of the variance in HbA1C test. The findings showed that age, b/a, and Dpp indices are promising factors in diabetes type II assessment. These findings expand the potential utility of DVP signal in clinical settings.

Downloads

Download data is not yet available.

References

S. I. Sherwani, H. A. Khan, A. Ekhzaimy, A. Masood and M. K. Sakharkar, Significance of HbA1c test in diagnosis and prognosis of diabetic patients, Biomarker Insights 11 (2016), 95 – 104, DOI: 10.4137/BMI.S38440.

J. Wang, S. Tu, I. Lee, S. Lin, S. Lin, S. Su, W. Lee and W. H. Sheu, Contribution of postprandial glucose to excess hyperglycaemia in Asian type 2 diabetic patients using continuous glucose monitoring, Diabetes Metab. Res. Rev. 27 (2011), 79 – 84, DOI: 10.1002/dmrr.1149.

E. B. Ketema and K. T. Kibret, Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis, Archives of Public Health, Archives belges de santepublique 73 (2015), 43, DOI: 10.1186/s13690-015-0088-6.

D. M. Nathan, P. A. Cleary and J. Y. Backlund, Diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study research group, Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes, N. Engl. J. Med. 353 (2005), 2643 – 2653, DOI: 10.2337/dc13-2112.

C. Sandler and M. McDonnell, The role of hemoglobin A1c in the assessment of diabetes and cardiovascular risk, Cleveland Clinic Journal of Medicine 83 (Supplement 1) (2016), S4 – S10.

V. Vaidya, N. Gangan and J. Sheehan, Impact of cardiovascular complications among patients with Type 2 diabetes mellitus: a systematic review, Expert Rev. Pharmacoecon. Outcomes Res. 15(3) (2015), 487 – 497, DOI: 10.1586/14737167.2015.1024661.

J. M. Ahn, New aging index using signal features of both photoplethysmograms and acceleration plethysmograms, Healthcare Informatics Research 23(1) (2017), 53 – 59.

Q. Yousef, M. B. I. Reaz and M. A. M. Ali, The analysis of PPG morphology: investigating the effects of aging on arterial compliance, Meas. Sci. Rev. 12 (2012), 266 – 271, DOI: 10.2478/v10048-012-0036-3.

B. G. Papini, P. Fonseca, L. X. Aubert, S. Overeem, W. J. Bergmans and R. Vullings, Photoplethysmography beat detection and pulse morphology quality assessment for signal reliability estimation, 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, 2017, pp. 117 – 120, DOI: 10.1109/EMBC.2017.8036776.

P. C. Hsu, H. T. Wu and C. K. Sun, J. Med. Syst. 42 (2018), 43, DOI: 10.1007/s10916-018-0901-1.

H. Karimipour, H. Shandiz and E. Zahedi, Diabetic diagnose test based on PPG signal and identification system, JBiSE 2(6) (2009), 465 – 469.

A. Aymen and K. H. Shelley, Photoplethysmography, Best Pract Res Clin Anaesthesiol. 28(4) (2014), 395 – 406, DOI: 10.1016/j.bpa.2014.08.006.

J. L. Moraes, M. X. Rocha, G. G. Vasconcelos, F. J. E. Vasconcelos, V. H. C. de Albuquerque, A. R. Alexandria, Advances in photopletysmography signal analysis for biomedical applications, Sensors 18 (2018), 1894, 2 – 26, DOI: 10.3390/s18061894.

A. J. Flammer, T. Anderson, D. S. Celermajer, M. A. Creager, J. Deanfield, P. Ganz, N. M. Hamburg, T. F. Luscher, M. Shechter and S. Taddei, The assessment of endothelial function from research into clinical practice, Circulation 126(6) (2012), 753 – 767.

Y. Qawqzeh, U. Rubins and M. Alharbi, Photoplethysmogram second derivative review: Analysis and applications, Scientific Research and Essays 10(21) (2015), 633 – 639, DOI: 10.5897/SRE2015.6322.

L. Aaron and W. Eleanor, Genetics of HbA1c: a case study in clinical translation, Current Opinion in Genetics & Development 50 (2018), 79 – 85, DOI: 10.1016/j.gde.2018.02.008.

H.-T. Wu, C.-C. Liu, P.-H. Lin, H.-M. Chung, M.-C. Liu, H.-K. Yip, A.-B. Liu and C.-K. Sun, Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects, Atherosclerosis 213(1) (2010), 173 – 177, DOI: 10.1016/j.atherosclerosis.2010.08.075.

R. R. Little and W. L. A. Roberts, A review of variant hemoglobins interfering with hemoglobin A1c measurement, Journal of Diabetes Science and Technology 3(3) (2009), 446 – 451, DOI: 10.1177/193229680900300307.

A. Karami and A. Baradaran, Comparative evaluation of three different methods for HbA1c measurement with High-performance liquid chromatography in diabetic patients, Advanced Biomedical Research 3 (2014), 94, DOI: 10.4103/2277-9175.129364.

K. T. N. Takazawa, M. Fujita, O. Matsuoka, T. Saiki, M. Aikawa, S. Tamura and C. Ibukiyama, Assessment of vasocative agents and vascular aging by the second derivative of photoplethysmogram waveform, Hypertension. 32 (1998), 365 – 370, DOI: 10.1161/01.HYP.32.2.365.

I. Imanaga, H. Hara, S. Koyanagi and K. Tanaka, Correlation between wave components of the second derivative of plethysmogram and arterial distensibility, Jpn. Heart J. 39 (1998), 775 – 784., https://www.ncbi.nlm.nih.gov/pubmed/10089939.

M. Reguig, F. Med and F. Reguig, Photoplethysmogram signal processing and analysis in evaluating arterial stiffness, International Journal of Biomedical Engineering and Technology 23 (2017), 363, DOI: 10.1504/IJBET.2017.10003507.

B. Peskin and R. Rowen, Breakthrough in clinical cardiology: InOffice Assessment with Pulse Wave Velocity (PWV) and Digital Pulse Analysis (DPA), Clin. Cardiol, 2010, pp. 80 – 86, https://www.semanticscholar.org/paper/Breakthrough-in-Clinical-Cardiology%3A-In-Office-with-Peskin-Rowen/374273d6383cb2cfa66e7945aa54ceb53274d7e1.

A. Alberto, The finger volume pulse and the assessment of arterial properties, J. Hypertens. 20 (2002), 2341 – 2343, DOI: 10.1097/00004872-200212000-00007.

Downloads

Published

31-12-2019
CITATION

How to Cite

Qawqzeh, Y. (2019). Digital Volume Pulse Analysis to Differentiate Diabetic From Non-Diabetic Subjects. Communications in Mathematics and Applications, 10(4), 707–716. https://doi.org/10.26713/cma.v10i4.1266

Issue

Section

Research Article