Digital Volume Pulse Analysis to Differentiate Diabetic From Non-Diabetic Subjects
DOI:
https://doi.org/10.26713/cma.v10i4.1266Keywords:
DVP, Diabetics type II, Age, HbA1C test, Arterial stiffnessAbstract
This paper aims to examine the validity of digital volume pulse waveform index namely the diastolic pulse peak (Dpp) in the evaluation of type II diabetics. In total, 153 participants (115 healthy participants and 48 diabetics type II patients) are recruited during the study. A customized algorithm for DVP waveform analysis is developed in MATLAB to analyze and calculate Dpp and b/a indices. The b/a index is found to be negatively correlated with both age and HbA1C test (\(r=-83.8\) and \(r=-66.7\), respectively), while Dpp index is found to be positively correlated with age and HbA1C test (\(r=65.7\) and \(r= 63.3\), respectively). The DVP's Dpp index showed strong association with age and HbA1C test since it remains statistically significant based on the analysis of multi-linear regression. The model revealed that b/a, age, and Dpp contribute by 71.9\% of the variance in HbA1C test. The findings showed that age, b/a, and Dpp indices are promising factors in diabetes type II assessment. These findings expand the potential utility of DVP signal in clinical settings.Downloads
References
S. I. Sherwani, H. A. Khan, A. Ekhzaimy, A. Masood and M. K. Sakharkar, Significance of HbA1c test in diagnosis and prognosis of diabetic patients, Biomarker Insights 11 (2016), 95 – 104, DOI: 10.4137/BMI.S38440.
J. Wang, S. Tu, I. Lee, S. Lin, S. Lin, S. Su, W. Lee and W. H. Sheu, Contribution of postprandial glucose to excess hyperglycaemia in Asian type 2 diabetic patients using continuous glucose monitoring, Diabetes Metab. Res. Rev. 27 (2011), 79 – 84, DOI: 10.1002/dmrr.1149.
E. B. Ketema and K. T. Kibret, Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis, Archives of Public Health, Archives belges de santepublique 73 (2015), 43, DOI: 10.1186/s13690-015-0088-6.
D. M. Nathan, P. A. Cleary and J. Y. Backlund, Diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study research group, Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes, N. Engl. J. Med. 353 (2005), 2643 – 2653, DOI: 10.2337/dc13-2112.
C. Sandler and M. McDonnell, The role of hemoglobin A1c in the assessment of diabetes and cardiovascular risk, Cleveland Clinic Journal of Medicine 83 (Supplement 1) (2016), S4 – S10.
V. Vaidya, N. Gangan and J. Sheehan, Impact of cardiovascular complications among patients with Type 2 diabetes mellitus: a systematic review, Expert Rev. Pharmacoecon. Outcomes Res. 15(3) (2015), 487 – 497, DOI: 10.1586/14737167.2015.1024661.
J. M. Ahn, New aging index using signal features of both photoplethysmograms and acceleration plethysmograms, Healthcare Informatics Research 23(1) (2017), 53 – 59.
Q. Yousef, M. B. I. Reaz and M. A. M. Ali, The analysis of PPG morphology: investigating the effects of aging on arterial compliance, Meas. Sci. Rev. 12 (2012), 266 – 271, DOI: 10.2478/v10048-012-0036-3.
B. G. Papini, P. Fonseca, L. X. Aubert, S. Overeem, W. J. Bergmans and R. Vullings, Photoplethysmography beat detection and pulse morphology quality assessment for signal reliability estimation, 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, 2017, pp. 117 – 120, DOI: 10.1109/EMBC.2017.8036776.
P. C. Hsu, H. T. Wu and C. K. Sun, J. Med. Syst. 42 (2018), 43, DOI: 10.1007/s10916-018-0901-1.
H. Karimipour, H. Shandiz and E. Zahedi, Diabetic diagnose test based on PPG signal and identification system, JBiSE 2(6) (2009), 465 – 469.
A. Aymen and K. H. Shelley, Photoplethysmography, Best Pract Res Clin Anaesthesiol. 28(4) (2014), 395 – 406, DOI: 10.1016/j.bpa.2014.08.006.
J. L. Moraes, M. X. Rocha, G. G. Vasconcelos, F. J. E. Vasconcelos, V. H. C. de Albuquerque, A. R. Alexandria, Advances in photopletysmography signal analysis for biomedical applications, Sensors 18 (2018), 1894, 2 – 26, DOI: 10.3390/s18061894.
A. J. Flammer, T. Anderson, D. S. Celermajer, M. A. Creager, J. Deanfield, P. Ganz, N. M. Hamburg, T. F. Luscher, M. Shechter and S. Taddei, The assessment of endothelial function from research into clinical practice, Circulation 126(6) (2012), 753 – 767.
Y. Qawqzeh, U. Rubins and M. Alharbi, Photoplethysmogram second derivative review: Analysis and applications, Scientific Research and Essays 10(21) (2015), 633 – 639, DOI: 10.5897/SRE2015.6322.
L. Aaron and W. Eleanor, Genetics of HbA1c: a case study in clinical translation, Current Opinion in Genetics & Development 50 (2018), 79 – 85, DOI: 10.1016/j.gde.2018.02.008.
H.-T. Wu, C.-C. Liu, P.-H. Lin, H.-M. Chung, M.-C. Liu, H.-K. Yip, A.-B. Liu and C.-K. Sun, Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects, Atherosclerosis 213(1) (2010), 173 – 177, DOI: 10.1016/j.atherosclerosis.2010.08.075.
R. R. Little and W. L. A. Roberts, A review of variant hemoglobins interfering with hemoglobin A1c measurement, Journal of Diabetes Science and Technology 3(3) (2009), 446 – 451, DOI: 10.1177/193229680900300307.
A. Karami and A. Baradaran, Comparative evaluation of three different methods for HbA1c measurement with High-performance liquid chromatography in diabetic patients, Advanced Biomedical Research 3 (2014), 94, DOI: 10.4103/2277-9175.129364.
K. T. N. Takazawa, M. Fujita, O. Matsuoka, T. Saiki, M. Aikawa, S. Tamura and C. Ibukiyama, Assessment of vasocative agents and vascular aging by the second derivative of photoplethysmogram waveform, Hypertension. 32 (1998), 365 – 370, DOI: 10.1161/01.HYP.32.2.365.
I. Imanaga, H. Hara, S. Koyanagi and K. Tanaka, Correlation between wave components of the second derivative of plethysmogram and arterial distensibility, Jpn. Heart J. 39 (1998), 775 – 784., https://www.ncbi.nlm.nih.gov/pubmed/10089939.
M. Reguig, F. Med and F. Reguig, Photoplethysmogram signal processing and analysis in evaluating arterial stiffness, International Journal of Biomedical Engineering and Technology 23 (2017), 363, DOI: 10.1504/IJBET.2017.10003507.
B. Peskin and R. Rowen, Breakthrough in clinical cardiology: InOffice Assessment with Pulse Wave Velocity (PWV) and Digital Pulse Analysis (DPA), Clin. Cardiol, 2010, pp. 80 – 86, https://www.semanticscholar.org/paper/Breakthrough-in-Clinical-Cardiology%3A-In-Office-with-Peskin-Rowen/374273d6383cb2cfa66e7945aa54ceb53274d7e1.
A. Alberto, The finger volume pulse and the assessment of arterial properties, J. Hypertens. 20 (2002), 2341 – 2343, DOI: 10.1097/00004872-200212000-00007.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.