On Ternary Monoid of All Hypersubstitutions of Type τ=(2)

Authors

  • Nagornchat Chansuriya Faculty of Science Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong Thailand 21120
  • Sorasak Leeratanavalee Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200

DOI:

https://doi.org/10.26713/cma.v10i4.1256

Keywords:

Hypersubstitutions, Ternary semigroup, Ternary ideal

Abstract

The present paper gives the concept of a ternary monoid Hyp(2) and studies some algebraic-structural properties of this monoid. We consider some submonoids of Hyp(2) and study the relationship between these submonoids.

Downloads

References

K. Denecke and J. Koppitz, Finite monoid of hypersubstitutions of type (tau=(2)), Semigroup Forum 56 (1998), 265 – 275, DOI: 10.1007/PL00005945.

K. Denecke and Sh. L. Wismath, The monoid of hypersubstitutions of type (tau=(2)), Contributions to General Algebra, Klagenfurt 10 (1998), 109 – 127.

W. A. Dudek, Idempotents in n-ary semigroups, Southeast Asian Bull. Math. 25 (2001), 97 – 104, DOI: 10.1007/s10012-001-0097-y.

W. A. Dudek and I. Groúdzinska, On ideals in regular n-semigroups, Mat. Bilten (Skopje) 4(XXX) (1980), 35 – 44.

J. M. Howie, An Introduction to Semigroup Theory, Academic Press Inc., London (1976).

A. Iampan, Some properties of ideal extensions in ternary semigroups, Iranian Journal of Mathematical Sciences and Informatics 8(1) (2013), 67 – 74, DOI: 10.7508/ijmsi.2013.01.007.

S. Kar and B. K. Maity, Congruences on ternary semigroups, Journal of Chungcheong Mathematical Society 20(3) (2007), 191 – 201.

E. Kasner, An extension of the group concept, (reported by Weld L. G.), Bull. Amer. Math. Soc. 10 (1904), 290 – 291.

J. Koppitz and K. Denecke, M-Solid Varieties of Algebras, Springer Science+Business Media, Inc., New York (2006), DOI: 10.1007/0-387-30806-7.

M. L. Santiago and S. Sri Bala, S Ternary semigroups, Semigroup Forum 81 (2010), 380 – 388, DOI: 10.1007/s00233-010-9254-x.

Y. Sarala, A. Anjaneyulu and D. Madhusudhana Rao, Pseudo symmetric ideals in ternary semigroups, International Refereed Journal of Engineering and Science (IRJES) 1(4) (2012), 33 – 43.

F. M. Siosan, Ideals in ((m +1))-semigroups, Ann. Mat. Pura Appl. 68 (1965), 161 – 200, DOI: 10.1007/BF02411024.

F. M. Siosan, Ideal theory in ternary semigroups, Math. Japan. 10 (1965), 63 – 84.

F. M. Siosan, On regular algebraic systems: A note on notes by Iseki, Kovacs, and Lajos, Proc. Japan. Acad. 39 (1963), 283 – 286, DOI: 10.3792/pja/1195523057.

Downloads

Published

31-12-2019

How to Cite

Chansuriya, N., & Leeratanavalee, S. (2019). On Ternary Monoid of All Hypersubstitutions of Type τ=(2). Communications in Mathematics and Applications, 10(4), 659–671. https://doi.org/10.26713/cma.v10i4.1256

Issue

Section

Research Article