The Domination Number of a Graph \(P_k ((k_1, k_2), (k_3, k_4))\)

Authors

  • Monthiya Ruangnai PhD Program in Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200
  • Sayan Panma Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200

DOI:

https://doi.org/10.26713/cma.v10i4.1248

Keywords:

Domination number, Tree, A dominating set of a graph, The domination number of a graph, The domination number of a tree

Abstract

For each \(k, k_1, k_2, k_3, k_4 \in \mathbb{N}\), we will denote by \(P_k \big((k_1, k_2), (k_3, k_4)\big)\) a tree of \(k+k_1+k_2+k_3+k_4+1\) vertices with the degree sequence \((1,1,1,1,2,2,2,\dots,2,3,3)\). Let \(\alpha_{k_1}, \beta_{k_2}, \sigma_{k_3}\), and \(\delta_{k_4}\) be all four endpoints of the graph. Let the distance between both vertices of degree 3 be equal to \(k\). A subset \(S\) of vertices of a graph \(P_k \big((k_1, k_2), (k_3, k_4)\big)\) is a dominating set of \(P_k \big((k_1, k_2), (k_3, k_4)\big)\) if every vertex in \(V\big(P_k \big((k_1, k_2), (k_3, k_4)\big)\big)-S\) is adjacent to some vertex in \(S\). We investigate the dominating set of minimum cardinality of a graph \(P_k \big((k_1, k_2), (k_3, k_4)\big)\) to obtain the domination number of this graph. Finally, we determine an upper bound on the domination number of a graph \(P_k \big((k_1, k_2), (k_3, k_4)\big)\).

Downloads

Download data is not yet available.

References

S. Alikhani, Y. H. Peng and K. A. M. Atan, On the domination number of some graphs, Int. Math. Forum 3(38) (2008), 1879 – 1884.

M. M. Bacolod and M. P. Baldado Jr., Domination number of the acquaint vertex gluing of graphs, Appl. Math. Sci. 8(161) (2014), 8029 – 8036.

G. Chartrand and P. Zhang, Introduction to Graph Theory, International edition, McGraw-Hill, 361 – 368 (2005).

T. T. Chelvam and G. Kalaimurugan, Bounds for domination parameters in Cayley graphs on dihedral group, Open J. Discrete Math. 2(1) (2012), 5 – 10, DOI: 10.4236/ojdm.2012.21002.

A. Frendrup, M. A. Henning, B. Randerath and P. D. Vestergaard, An upper bound on the domination number of a graph with minimum degree, Discrete Mathematics 309(2) (2009), 639 – 646, DOI: 10.1016/j.disc.2007.12.080.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Dominations in Graphs, Marcel Dekker, New York (1998).

J. Huang and J. M. Xu, Domination and total domination contraction numbers of graphs, Ars Combinatoria 94 (2010), 431 – 443, URL: http://staff.ustc.edu.cn/~xujm/201004.pdf.

A. V. Kostochka and C. Stocker, A new bound on the domination number of connected cubic graph, Siberian Elect. Math. Reports 6 (2009), 465 – 504, URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.224.9130.

A. V. Kostochka and B. Y. Stodolsky, An upper bound on the domination number of n-vertex connected cubic graphs, Discrete Math. 309 (2009), 1142 – 1162, DOI: 10.1016/j.disc.2007.12.009.

N. Murugesan and D. S. Nair, The domination and independence of some cubic bipartite graphs, Int. J. Contemp. Math. Sciences 6 (2011), 611 – 618.

N. Nupo and S. Panma, Domination in Cayley digraphs of rectangular groups, in Proceedings of International Conference on Science & Technology, Bangkok (2014).

R. Wilson, Introduction to Graph Theory, 4th edition, Addison Wesley Longman Limited, England (1996).

Downloads

Published

31-12-2019
CITATION

How to Cite

Ruangnai, M., & Panma, S. (2019). The Domination Number of a Graph \(P_k ((k_1, k_2), (k_3, k_4))\). Communications in Mathematics and Applications, 10(4), 745–762. https://doi.org/10.26713/cma.v10i4.1248

Issue

Section

Research Article