Fixed Point Theorems for a Demicontractive Mapping and Equilibrium Problems in Hilbert Spaces

Authors

  • Wongvisarut Khuangsatung Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumtani 12110
  • Sarawut Suwannaut Department of Mathematics, Faculty of Science, Lampang Rajabhat University, Lampang 50100

DOI:

https://doi.org/10.26713/cma.v11i2.1237

Keywords:

The combination of equilibrium problem, Fixed point, Demicontractive mapping

Abstract

In this research, we introduce some properties of demicontractive mapping and the combination of equilibrium problem. Then, we prove a strong convergence for the iterative sequence converging to a common element of fixed point set of demicontractive mapping and a common solution of equilibrium problems. Finally, we give a numerical example for the main theorem to support our results.

Downloads

References

E. Blum and W. Oettli, From optimization and variational inequilities to equilibrium problems, Mathematics Students 63(14) (1994), 123 – 145.

A. Bnouhachem, A hybrid iterative method for a combination of equilibria problem, a combination of variational inequality problems and a hierarchical fixed point problem. Fixed Point Theory and Applications 2014 (2014), Article number 163, DOI: 10.1186/1687-1812-2014-163.

P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, Journal of Nonlinear and Convex Analysis 6(1) (2005), 117 – 136, https://www.ljll.math.upmc.fr/plc/jnca1.pdf.

S. Iemoto and W. Takahashi, Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Analysis: Theory, Methods & Applications 71 (2009), 2082 – 2089, DOI: 10.1016/j.na.2009.03.064.

A. Kangtunyakarn, A new iterative scheme for fixed point problems of infinite family of (kappa_i)-pseudo contractive mappings, equilibrium problem, variational inequality problems, Journal of Global Optimization 56, 1543 – 1562, DOI: 10.1007/s10898-012-9925-0.

A. Kangtunyakarn, Convergence theorem of (kappa)-strictly pseudo-contractive mapping and a modification of generalized equilibrium problems, Fixed Point Theory and Applications 2012 (2012), Article number 89, DOI: 10.1186/1687-1812-2012-89.

W. Khuangsatung and A. Kangtunyakarn, Algorithm of a new variational inclusion problem and strictly pseudo nonspreading mapping with application, Fixed Point Theory and Applications 2014 (2014), Article number 209, DOI: 10.1186/1687-1812-2014-209.

F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Archiv der Mathematik 91 (2008), 166 – 177, DOI: 10.1007/s00013-008-2545-8.

S. Maruster, Strong convergence of the mann iteration of demicontractive mappings, Applied Mathematical Sciences 9(42) (2015), 2061 – 2068, DOI: 10.12988/ams.2015.5166.

S. Maruster, The solution by iteration of nonlinear equations in hilbert spaces, Proceedings of the American Mathematical Society 63(1) (1977), 69 – 73, DOI: 10.2307/2041067.

C. Mongkolkeha, Y. J. Cho and P. Kumam, Convergence theorems for k-demicontractive mappings in Hilbert spaces, Mathematical Inequalities and Applications 16(4) (2013), 1065 – 1082, DOI: 10.7153/mia-16-83.

Z. Opial, Weak convergence of the sequence of successive approximation of nonexpansive mappings, Bulletin of the American Mathematical Society 73(1967), 591 – 597, https://projecteuclid.org/download/pdf1/euclid.bams/1183528964.

M. O. Osilike and F. O. Isiogugu,Weak and strong convergence theorems for nonspreading-type mappings in Hilbert spaces, Nonlinear Analysis 74 (2011), 1814 – 1822, DOI: 10.1016/j.na.2010.10.054.

S. Suwannaut and A. Kangtunyakarn, Convergence analysis for the equilibrium problems with numerical results, Fixed Point Theory and Applications 2014 (2014), Article number 167, DOI: 10.1186/1687-1812-2014-167.

S. Suwannaut and A. Kangtunyakarn, The combination of the set of solutions of equilibrium problem for convergence theorem of the set of fixed points of strictly pseudo-contractive mappings and variational inequalities problem, Fixed point Theory and Applications 2013 (2013), Article number 291, DOI: 10.1186/1687-1812-2013-291.

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama (2000), http://www.ybook.co.jp/nonlinear.htm.

H. K. Xu, An iterative approach to quadric optimization, Journal of Optimization Theory and Applications 116 (2003), 659 – 678, DOI: 10.1023/A:1023073621589.

Downloads

Published

30-06-2020
CITATION

How to Cite

Khuangsatung, W., & Suwannaut, S. (2020). Fixed Point Theorems for a Demicontractive Mapping and Equilibrium Problems in Hilbert Spaces. Communications in Mathematics and Applications, 11(2), 181–198. https://doi.org/10.26713/cma.v11i2.1237

Issue

Section

Research Article