A New Type of Ideal Convergence of Difference Sequence in Probabilistic Normed Space

Authors

  • Vakeel A. Khan Department of Mathematics, Aligarh Muslim University, Aligarh 202002
  • Henna Altaf Department of Mathematics, Aligarh Muslim University, Aligarh 202002
  • Mohammad Faisal Khan College of Science and Theoretical Studies,Saudi Electronic University, Riyadh 11673

DOI:

https://doi.org/10.26713/cma.v9i4.1197

Keywords:

Triangular norm, Probabilistic normed space, \(\Delta I\)-convergence, \(\Delta I^{*}\)-convergence, \(\Delta I\)-limit points, \(\Delta I\)-cluster points

Abstract

The idea of difference sequence sets \(X(\Delta)=\{x=(x_{k}):\Delta x\in X\}\) with \(X=l_{\infty}\), \(c\) and \(c_{0}\) was introduced by Kizmaz [10]. Mursaleen and Mohiuddine [13] defined the idea of probabilistic normed space(PNS) and the ideal convergence in PNS. Motivated by the above two concepts, we in this paper introduce the notion of   difference \(I\)-convergent  sequence  in PNS and study the elementary properties of this convergence.

Downloads

Download data is not yet available.

References

C. Alsina, B. Schweizer and A. Sklar, Continuity properties of probabilistic norms, Journal of Mathematical Analysis and Applications, 208 (1997), 446 – 452, https://core.ac.uk/download/pdf/82030803.pdf.

M. Balcerzak, K. Dems and A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, Journal of Mathematical Analysis and Applications 328 (2007), 715 – 729, DOI: 10.1016/j.jmaa.2006.05.040.

Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications 288 (2003), 223 – 231, DOI: 10.1016/j.jmaa.2003.08.004.

H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2 (1951), 241 – 244, http: //matwbn.icm.edu.pl/ksiazki/cm/cm2/cm2137.pdf.

M.J. Frank, Probabilistic topological spaces, Journal of Mathematical Analysis and Applications, 34 (1971), 67 – 81, https://core.ac.uk/download/pdf/82210079.pdf.

J.A. Fridy, On statistical convergence. Analysis 5 (1985), 301 – 314, DOI: 10.1524/anly.1985.5.4.301.

H.G. Gumus and F. Nuray, ±{m}-ideal convergence, Selcuk Journal of Applied Mathematics 12 (2011), 101 –110, http://sjam.selcuk.edu.tr/sjam/article/view/308.

V.A. Khan and N. Khan, On zweier i-convergent double sequence spaces, Filomat, 30 (2016), 3361 – 3369, DOI: 10.2298/FIL1612361K.

V.A. Khan, Y. Khan, H. Altaf, A. Esi and A. Ahamd, On paranorm intuitionistic fuzzy i-convergent sequence spaces defined by compact operator, International Journal of Advanced and Applied Sciences 4 (2017), 138 – 143, 10.21833/ijaas.2017.05.024.

H Kizmaz, Certain sequence spaces, Can. Math. Bull. 24(1981), 169 – 176, DOI: 10.4153/CMB-1981-027-5.

P. Kostyrko, W. Wilczy ´ nski and T. Å alát, I-convergence, Real Analysis Exchange 26 (2000), 669 – 686, https://projecteuclid.org/download/pdf_1/euclid.rae/1214571359.

K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences 28 (1942), 535 – 537, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1078534/pdf/pnas01647-0029.pdf.

M. Mursaleen and S. Mohiuddine, On ideal convergence in probabilistic normed spaces, Mathematica Slovaca 62 (2012), 49 – 62, DOI: 10.2478/s12175-011-0071-9.

M. Mursaleen and S.A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Mathematical Reports 12 (2010), 359 – 371, https://www.researchgate.net/profile/Mohammad_Mursaleen/publication/265369529.

T. Å alát, B.C. Tripathy and M. Ziman, On some properties of i-convergence, Tatra Mt. Math. Publ. 28 (2004), 274 – 286, https://www.researchgate.net/profile/Binod_Tripathy/publication/228432524.

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10 (1960), 313 – 334, https://www.researchgate.net/profile/Binod_Tripathy/publication/228432524.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73 – 74, https://www.impan.pl/en/publishing-house/journals-and-series/colloquium-mathematicum.

B.C. Tripathy and R. Goswami, On triple difference sequences of real numbers in probabilistic normed spaces, Proyecciones (Antofagasta) 33 (2014), 157 – 174, DOI: 10.4067/S0716-09172014000200003.

Downloads

Published

30-12-2018
CITATION

How to Cite

Khan, V. A., Altaf, H., & Khan, M. F. (2018). A New Type of Ideal Convergence of Difference Sequence in Probabilistic Normed Space. Communications in Mathematics and Applications, 9(4), 737–745. https://doi.org/10.26713/cma.v9i4.1197

Issue

Section

Research Article