On the Solution of Reduced Wave Equation with Damping
DOI:
https://doi.org/10.26713/cma.v1i2.118Keywords:
Helmholtz equation, Reduced wave equation, Differential equationAbstract
In this paper we find particular solutions of Reduced wave equation with damping in the form $\Delta u+k^{2}n( \mathbf{x}) u+\mu \vert \nabla u\vert =0$, $\mathbb{R}^{n}$, $\mu\in\mathbb{R} $ and $n(\mathbf{x)}$ is a continuous function on $\Omega$, by making use of Fundamental solution $u=\frac{\exp(ikR)}{R}$ of the scalar Helmholtz equation and employing a variation of constant technique. Moreover, some examples are given to illustrate the importance of our results.Downloads
Download data is not yet available.
Downloads
CITATION
How to Cite
Misir, A. (2010). On the Solution of Reduced Wave Equation with Damping. Communications in Mathematics and Applications, 1(2), 113–122. https://doi.org/10.26713/cma.v1i2.118
Issue
Section
Research Article
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.