Equality in Distribution of Random Sums for Introducing Selfdecomposability

Authors

  • Constantinos T. Artikis Department of Tourism, Faculty of Economic Sciences, Ionian University, 49132 Corfu
  • Panagiotis T. Artikis Department of Accounting & Finance, University of West Attica, 12244 Egaleo, Athens

DOI:

https://doi.org/10.26713/cma.v11i4.1118

Keywords:

Random sum, Equality in distribution, Probability generating function

Abstract

It constitutes a general recognition that discrete Poisson random sums are very strong tools of probability theory with significant applications in a very wide variety of important practical disciplines. The paper makes use of an equality in distribution for the investigation of the structure of a particularly significant class of discrete Poisson random sums.

Downloads

Download data is not yet available.

References

C. T. Artikis and P. T. Artikis. Discrete random sums in processes of systemics arising in cybernetics and informatics, Journal of Discrete Mathematical Sciences & Cryptography 12 (2009), 335 – 345, DOI: 10.1080/09720529.2009.10698240.

N. L. Johnson, S. Kotz and A. W. Kemp, Univariate Discrete Distributions, 2nd edition, Wiley, New York (1993), URL: http://inis.jinr.ru/sl/vol1/UH/_Ready/Mathematics/Johnson%20N.,%20Kotz%20S.,%20Kemp%20A.W.%20Univariate%20discrete%20distributions%20(Wiley,%202ed,%201992)(L)(295s).pdf.

Z. J. Jurek, Selfdecomposability: an exception or a rule?, Annales Universitatis Mariae Curie Sklodowska LI.1 (10), Sectio A (1997), 93 – 107, URL: https://www.researchgate.net/profile/Zbigniew_J_Jurek/publication/265456593_Selfdecomposability_An_exception_or_a_rule/links/56b8cefd08aeb65a96ac6b0e/Selfdecomposability-An-exception-or-a-rule.pdf.

Z. J. Jurek and W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 62 (1983), 247 – 262, DOI: 10.1007/BF00538800.

F. W. Steutel, Note on discrete-unimodality, Statistica Neerlandica 42 (1988), 137 – 140, DOI: 10.1111/j.1467-9574.1988.tb01226.x.

F. W. Steutel and K. van Harn, Discrete analogues of selfdecomposability and stability, The Annals of Probability 7 (1979), 893 – 899, DOI: 10.1214/aop/1176994950.

F. W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, Inc., New York (2004), URL: https://research.vu.nl/en/publications/infinite-divisibility-of-probability-distributions-on-the-real-li.

Downloads

Published

31-12-2020
CITATION

How to Cite

Artikis, C. T., & Artikis, P. T. (2020). Equality in Distribution of Random Sums for Introducing Selfdecomposability. Communications in Mathematics and Applications, 11(4), 559–562. https://doi.org/10.26713/cma.v11i4.1118

Issue

Section

Research Article