Coupled Random Fixed Point Theorems for Mixed Monotone Nonlinear Operators

Authors

  • Chayut Kongban KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand; KMUTT-Fixed Point Theory and Applications Research Group (KMUTT-FPTA), Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140
  • Poom Kumam KMUTTFixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand; KMUTT-Fixed Point Theory and Applications Research Group (KMUTT-FPTA), Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140
  • Juan Martí­nez-Moreno Department of Mathematics, Faculty of Experimental Science, University of Jaén, Campus Las Lagunillas, s/n, 23071 Jaén

DOI:

https://doi.org/10.26713/cma.v10i2.1083

Keywords:

Coupled random coincidence, Coupled random fixed point, Measurable mapping, Mixed monotone mapping, Random operator

Abstract

In this paper, we prove the existence of a random coupled coincidence and  coupled random fixed point theorems in complete separable metric space without the mixed \(g\)-monotone property. The results are used to prove existence of random solutions for random integral equation.

Downloads

Download data is not yet available.

References

R. P. Agarwal, M. A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), 109 – 116, DOI: 10.1080/00036810701556151.

I. Beg and N. Shahzad, Random fixed points of random multivalued operators on Polish spaces, Nonlinear Anal. 20 (1993), 835 – 847, DOI: 10.1016/0362-546X(93)90072-Z.

I. Beg and N. Shahzad, Random fixed point theorems for nonexpansive and contractive-type random operators on Banach spaces, J. Appl. Math. Stochastic Anal. 7 (1994), 569 – 580, DOI: 10.1155/S1048953394000444.

V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 7347 – 7355, DOI: 10.1016/j.na.2011.07.053.

A. T. Bharucha-Reid, Random integral equations, Academic Press, New York ” London, 1972, Mathematics in Science and Engineering, Vol. 96.

A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641 – 657, DOI: 10.1090/S0002-9904-1976-14091-8.

B. S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), 2524 – 2531, DOI: 10.1016/j.na.2010.06.025.

L. C´ iric´ and V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stoch. Anal. Appl. 27 (2009), 1246 – 1259, DOI: 10.1080/07362990903259967.

T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379 – 1393, DOI: 10.1016/j.na.2005.10.017.

O. Hanš, Reduzierende zufällige Transformationen, Czechoslovak Math. J. 7 (1957), 154 – 158.

O. Hanš, Random operator equations, in Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, 185 – 202, Univ. California Press, Berkeley, California (1961).

C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53 – 72, DOI: 10.4064/fm-87-1-53-72.

S. Itoh, A random fixed point theorem for a multivalued contraction mapping, Pacifc J. Math. 68 (1977), 85 – 90.

S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261 – 273, DOI: 10.1016/0022-247X(79)90023-4.

B. Jiang, S. Xu and L. Shi, Coupled coincidence points for mixed monotone random operators in partially ordered metric spaces, Abstr. Appl. Anal. 2014 (2014), 9 pages Article ID 484857, DOI: 10.1155/2014/484857.

A. R. Khan, N. Hussain, N. Yasmin and N. Shafqat, Random coincidence point results for weakly increasing functions in partially ordered metric spaces, Bull. Iranian Math. Soc. 41 (2015), 407 – 422.

P. Kumam, Random common fixed points of single-valued and multivalued random operators in a uniformly convex Banach space, J. Comput. Anal. Appl. 13 (2011), 368 – 375.

P. Kumam and S. Plubtieng, Some random fixed point theorems for random asymptotically regular operators, Demonstratio Math. 42 (2009), 131 – 141, DOI: 10.1515/dema-2009-0113.

W. Kumam and P. Kumam, Random fixed points of multivalued random operators with property (D), Random Oper. Stoch. Equ. 15 (2007), 127 – 136, DOI: 10.1515/rose.2007.008.

W. Kumam and P. Kumam, Random fixed point theorems for multivalued subsequentially limitcontractive maps satisfying inwardness conditions, J. Comput. Anal. Appl. 14 (2012), 239 – 251.

V. Lakshmikantham and L. C´ iric´, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341 – 4349, DOI: 10.1016/j.na.2008.09.020.

G. Li and H. Duan, On random fixed point theorems of random monotone operators, Appl. Math. Lett. 18 (2005), 1019 – 1026, DOI: 10.1016/j.aml.2004.10.006.

T. C. Lin, Random approximations and random fixed point theorems for non-self-maps, Proc. Amer. Math. Soc. 103 (1988), 1129 – 1135, DOI: 10.1080/07362990008809659.

N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011), 983 – 992, DOI: 10.1016/j.na.2010.09.055.

E. J. McShane and R. B. Warfield, On Filippov's implicit functions lemma, Proc. Amer. Math. Soc. 18 (1967), 41 – 47, DOI: 10.2307/2035221.

A. Mukherjea, Random transformations on banach spaces, ProQuest LLC, Ann Arbor, MI, 1967, Thesis (Ph.D.), Wayne State University.

J. J. Nieto, A. Ouahab and R. Rodrí­guez López, Random fixed point theorems in partially ordered metric spaces, Fixed Point Theory Appl. 98 (2016), 19 pages, DOI: 10.1186/s13663-019-0660-9.

J. J. Nieto and R. Rodrí­guez López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223 – 239, DOI: 10.1007/s11083-005-9018-5.

J. J. Nieto and R. Rodrí­guez López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007), 2205 – 2212, DOI: 10.1007/s10114-005-0769-0.

N. S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 97 (1986), 507 – 514, DOI: 10.1090/S0002-9939-1986-0840638-3.

A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435 – 1443, DOI: 10.1090/S0002-9939-03-07220-4.

R. T. Rockafellar, Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl. 28 (1969), 4 – 25, DOI: 10.1016/0022-247X(69)90104-8.

V. M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (1984), 425 – 429, DOI: 10.1090/S0002-9939-1984-0728362-7.

W. Shatanawi and Z. Mustafa, On coupled random fixed point results in partially ordered metric spaces, Mat. Vesnik 64 (2012), 139 – 146.

W. Sintunavarat, P. Kumam and Y. J. Cho, Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory Appl. 2012 (2012), 16 pages, DOI: 10.1186/1687-1812-2012-170.

A. Å pacek, Zufällige gleichungen, Czechoslovak Math. J. 5 (1955), 462 – 466.

D. H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optimization 15 (1977), 859 – 903, DOI: 10.1137/0315056.

Downloads

Published

30-06-2019
CITATION

How to Cite

Kongban, C., Kumam, P., & Martí­nez-Moreno, J. (2019). Coupled Random Fixed Point Theorems for Mixed Monotone Nonlinear Operators. Communications in Mathematics and Applications, 10(2), 215–229. https://doi.org/10.26713/cma.v10i2.1083

Issue

Section

Research Article