Iterative Methods for Solving the Proximal Split Feasibility Problems

Authors

  • Manatsawin Mamat School of Science, University of Phayao, Phayao 56000
  • Raweerote Suparatulatorn Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200
  • Prasit Cholamjiak School of Science, University of Phayao, Phayao 56000

DOI:

https://doi.org/10.26713/cma.v10i2.1082

Keywords:

Proximal split feasibility problem, Inertial, Hilbert space, Strong convergence theorem

Abstract

In this work, we study the proximal split feasibility problem. We introduce a new algorithm with inertial technique for solving this problem in Hilbert spaces. We also prove the strong convergence theorem under some suitable conditions. Finally, we give some numerical experiments to support our results.

Downloads

Download data is not yet available.

References

J. Y. Bello Cruz and Y. Shehu, An iterative method for split inclusion problems without prior knowledge of operator norms, Journal of Fixed Point Theory and Applications 19(3) (2017), 2017 – 2036, DOI: 10.1007/s11784-016-0387-8.

C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl. 18(2) (2002), 441 – 453, DOI: 10.1088/0266-5611/18/2/310.

P. Cholamjiak and S. Suantai, A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bulletin of the Malaysian Mathematical Sciences Society (2018), 1 – 18, DOI: 10.1007/s40840-018-614-0.

J. Deepho and P. Kumam, A viscosity approximation method for the split feasibility problems, in: Transactions on Engineering Technologies, G. C. Yang, S. I. Ao, X. Huang and O. Castillo (eds.), Springer, Dordrecht, (2014), pp. 69 – 77, DOI: 10.1007/978-94-017-9588-3_6.

G. Lopez, V. Martin-Marquez, F. Wang and H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl. 28 (2012), 085004, DOI: 10.1088/0266-5611/28/8/085004.

P. E. Maingé, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 325 (2007), 469 – 479, DOI: 10.1016/j.jmaa.2005.12.066.

P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899 – 912, DOI: 10.1007/s11228-008-0102-z.

A. Moudafi and B. S. Thakur, Solving proximal split feasibility problems without prior knowledge of operator norms, Optim. Lett. 8(7) (2014), 2099 – 2110, DOI: 10.1007/s11590-013-0708-4.

P. Ochs, T. Brox and T. Pock, iPiasco: inertial proximal algorithm for strongly convex optimization, J. Math. Imaging Vision 53 (2015), 171 – 181, DOI: 10.1007/s10851-015-0565-0.

B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Probl. 21(5) (2005), 1655 – 1665, DOI: 10.1088/0266-5611/21/5/009.

R. T. Rockafellar and R. Wets, Variational Analysis, Springer, Berlin (1988), DOI: 10.1007/978-3-642-02431-3.

Y. Shehu and O. S. Iyiola, Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method, Journal of Fixed Point Theory and Applications 19(4) (2017), 2483 – 2510, DOI: 10.1007/s11784-017-0435-z.

K. Sitthithakerngkiet, J. Deepho and P. Kumam, Modified hybrid steepest method for the split feasibility problem in image recovery of inverse problems, Numerical Functional Analysis and Optimization 38(4) (2017), 507 – 522, DOI: 10.1080/01630563.2017.1287084.

S. Suantai, N. Pholasa and P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Indust. Manag. Optim. 14 (2018), 1595 – 1615, DOI: 10.3934/jimo.2018023.

S. Suthep, Y. Shehu and P. Cholamjiak, Nonlinear iterative methods for solving the split common null point problem in Banach spaces, Optimization Methods and Software 34 (2018), 1 – 22, DOI: 10.1080/10556788.2018.1472257.

U. Witthayarat, Y. J. Cho and P. Cholamjiak, On solving proximal split feasibility problems and applications, Ann. Funct. Anal. 9 (2018), 111 – 122, DOI: 10.1007/s11590-013-0708-4.

H.-K. Xu, A variable Krasnosel'skii-Mann algorithm and the multiple-set split, Inverse Problems 22(6), (2006), 2021 – 2034, DOI: 10.1088/0266-5611/22/6/007.

H.-K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc. 66 (2002), 240 – 256, DOI: 10.1112/S0024610702003332.

Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Probl. 20(4) (2004), 1261 – 1266, DOI: 10.1088/0266-5611/20/4/014.

Q. Yang and J. Zhao, Generalized KM theorems and their applications, Inverse Probl. 22(3) (2006), 833 – 844, DOI: 10.1088/0266-5611/22/3/006.

Y. Yao, W. Jigang and Y.-C. Liou, Regularized methods for the split feasibility problem, Abstr. Appl. Anal. Article ID 140679, 13 (2012), DOI: 10.1155/2012/140679.

Downloads

Published

30-06-2019
CITATION

How to Cite

Mamat, M., Suparatulatorn, R., & Cholamjiak, P. (2019). Iterative Methods for Solving the Proximal Split Feasibility Problems. Communications in Mathematics and Applications, 10(2), 325–336. https://doi.org/10.26713/cma.v10i2.1082

Issue

Section

Research Article