Best Proximity Point Results for Quasi Contractions of Perov Type in Non-Normal Cone Metric Space
DOI:
https://doi.org/10.26713/cma.v10i2.1079Keywords:
Cone metric spaces, Non-normal cones, Best proximity point, Perov contraction, Spectral radiusAbstract
In this paper, we study the notion of Ciric-Perov quasi contraction and Fisher-Perov quasi contraction and prove some best proximity point theorems for such contractions in the frame work of non-normal regular cone metric spaces. We give an example to support our result. Our results extend and generalized many existing results in literature.
Downloads
References
M. Abbas, V. Rakoˇcevic and A. Hussain, Proximal cyclic contraction of perov type on regular cone metric space, J. Adv. Math. Stud. 9(1) (2016), 65 – 71.
M. Abbas, A. Hussain and P. Kumam, A coincidence best proximity point problem in G-metric spaces, Abstract and Applied Analysis 2015(2015), 12 pages, DOI: 10.1155/2015/243753.
M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, Journal of Mathematical Analysis and Applications 341(1) (2008), 416 – 420, DOI: 10.1016/j.jmaa.2007.09.070.
A. Amini-Harandi, Best proximity points for proximal generalized contractions in metric spaces, Optim. Lett. 7 (2013), 913 – 921, DOI: 10.1007/s11590-012-0470-z.
M. Al-Khaleel, S. Al-Sharifa and M. Khandaqji, Fixed points for contraction mappings in generalized cone metric spaces, Jordan J. Math. Stat. 5(4) (2012), 291 – 307.
S. S. Basha, Best proximity point theorems generalizing the contraction principle, Nonlinear Analysis 74(2011), 5844 – 5850, DOI: 10.1016/j.na.2011.04.017.
H. í‡akallı, A. Sönmez and í‡. Genç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Applied Mathematics Letters 25 (2012), 429 – 433, DOI: 10.1016/j.aml.2011.09.029.
Lj. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267 – 273.
M. Cvetkovic and V. Rakocevic, Quasi-contraction of Perov type, Appl. Math. Comput. 235 (2014), 712 – 722, DOI: 10.1016/j.amc.2014.02.065.
M. Cvetkovic and V. Rakocevic, Fisher Quasi-contraction of Perov type, Journal of Nonlinear and Convex Analysis 16(2) (2015), 339 – 352.
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag (1985).
W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Analysis 72(5) (2010), 2259 – 2261, DOI: 10.1016/j.na.2009.10.026.
A. A. Eldered and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001 – 1006, DOI: 10.1016/j.jmaa.2005.10.081.
L. Gajic and V. Rakocevic, Quasi-contractions on a nonnormal cone metric space, Functional Analysis and Its Applications 46(1) (2012), 62 – 65, DOI: 10.1007/s10688-012-0008-2.
R. H. Haghi, V. Rakocevic, S. Rezapour and N. Shahzad, Best proximity results in regular cone metric spaces, Rend. Circ. Mat. Palermo 60(2011), 323 – 327, DOI: 10.1007/s12215-011-0050-6.
L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), 1468 – 1476, DOI: 10.1016/j.jmaa.2005.03.087.
S. Jankovic, Z. Kadelburg and S. Radenovic, On the cone metric space: A survey, Nonl. Anal. 74(2011), 2591 – 2601, DOI: 10.1016/j.na.2010.12.014.
D. Ilic and V. Rakocevic, Quasi-contraction on a cone metric space, Appl. Math. Lett. 22(5) (2009), 728 – 731, DOI: 10.1016/j.aml.2008.08.011.
G. Jungck, S. Radenovic, S. Radojevic and V. Rakoˇcevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. 2009 2009, 13 pages, DOI: 10.1155/2009/643840.
Z. Kadelburg, S. Radenovic and V. Rakoˇcevic, Remarks on "Quasi-contraction on a cone metric space”, Appl. Math. Lett. 22(11) (2009), 1674 – 1679, DOI: 10.1016/j.aml.2009.06.003.
W. A. Kirk, P. S. Srinavasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79 – 89.
A. Latif and M. Abbas and A. Husain, Coincidence best proximity point of Fg-weak contractive mappings in partially ordered metric spaces, Journal of Nonlinear Science and Application 9 (2016), 2448 – 2457, DOI: 10.22436/jnsa.009.05.44.
H. Liu and S. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory and Applications 2013 (2013), Article ID 320, DOI: 10.1186/1687-1812-2013-320.
H. Liu and S. Xu, Fixed point theorem of quasi-contractions on cone metric spaces with Banach algebras, Abstract and Applied Analysis 2013 (2013), Article ID 187348, 5 pages, DOI: 10.1155/2013/187348.
C. Mongkolkeha and P. Kumam, Some common best proximity points for proximity commuting mappings, Optim Lett. 7 (2013), 1825 – 1836, DOI: 10.1007/s11590-012-0525-1.
C. Mongkolkeha, Y. J. Cho and P. Kumam, Best proximity points for Geraghty's proximal contraction mappings, Fixed Point Theo. and Appl. 2013 (2013), 180, DOI: 10.1186/1687-1812-2013-180.
G. Petrusel, Cyclic representations and periodic points, Studia Univ. Babes¸-Bolyai Math. 50 (2005), 107 – 112.
S. Radenovic and B. E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl. 57 (2009), 1701 – 1707, DOI: 10.1016/j.camwa.2009.03.058.
Sh. Rezapour and R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl. 345 (2008), 719 – 724, DOI: 10.1016/j.jmaa.2008.04.049.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.