Best Proximity Point Results for Quasi Contractions of Perov Type in Non-Normal Cone Metric Space

Authors

  • Azhar Hussain Department of Mathematics, University of Sargodha, Sargodha
  • Mujahid Abbas Department of Mathematics, Government College University, Lahore 54000, Pakistan; Department of Mathematics and Applied Mathematics, University of Pretoria Hatfield 002, Pretoria, South Africa
  • Jamshaid Ahmad Department of Mathematics, University of Jeddah, P.O. Box 80327, Jeddah 21589
  • Abdullah Eqal Al-Mazrooei Department of Mathematics, University of Jeddah, P.O. Box 80327, Jeddah 21589

DOI:

https://doi.org/10.26713/cma.v10i2.1079

Keywords:

Cone metric spaces, Non-normal cones, Best proximity point, Perov contraction, Spectral radius

Abstract

In this paper, we study the notion of Ciric-Perov quasi contraction and Fisher-Perov quasi contraction and prove some best proximity point theorems for such contractions in the frame work of non-normal regular cone metric spaces. We give an example to support our result. Our results extend and generalized many existing results in literature.

Downloads

Download data is not yet available.

References

M. Abbas, V. Rakoˇcevic and A. Hussain, Proximal cyclic contraction of perov type on regular cone metric space, J. Adv. Math. Stud. 9(1) (2016), 65 – 71.

M. Abbas, A. Hussain and P. Kumam, A coincidence best proximity point problem in G-metric spaces, Abstract and Applied Analysis 2015(2015), 12 pages, DOI: 10.1155/2015/243753.

M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, Journal of Mathematical Analysis and Applications 341(1) (2008), 416 – 420, DOI: 10.1016/j.jmaa.2007.09.070.

A. Amini-Harandi, Best proximity points for proximal generalized contractions in metric spaces, Optim. Lett. 7 (2013), 913 – 921, DOI: 10.1007/s11590-012-0470-z.

M. Al-Khaleel, S. Al-Sharifa and M. Khandaqji, Fixed points for contraction mappings in generalized cone metric spaces, Jordan J. Math. Stat. 5(4) (2012), 291 – 307.

S. S. Basha, Best proximity point theorems generalizing the contraction principle, Nonlinear Analysis 74(2011), 5844 – 5850, DOI: 10.1016/j.na.2011.04.017.

H. í‡akallı, A. Sönmez and í‡. Genç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Applied Mathematics Letters 25 (2012), 429 – 433, DOI: 10.1016/j.aml.2011.09.029.

Lj. B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267 – 273.

M. Cvetkovic and V. Rakocevic, Quasi-contraction of Perov type, Appl. Math. Comput. 235 (2014), 712 – 722, DOI: 10.1016/j.amc.2014.02.065.

M. Cvetkovic and V. Rakocevic, Fisher Quasi-contraction of Perov type, Journal of Nonlinear and Convex Analysis 16(2) (2015), 339 – 352.

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag (1985).

W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Analysis 72(5) (2010), 2259 – 2261, DOI: 10.1016/j.na.2009.10.026.

A. A. Eldered and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001 – 1006, DOI: 10.1016/j.jmaa.2005.10.081.

L. Gajic and V. Rakocevic, Quasi-contractions on a nonnormal cone metric space, Functional Analysis and Its Applications 46(1) (2012), 62 – 65, DOI: 10.1007/s10688-012-0008-2.

R. H. Haghi, V. Rakocevic, S. Rezapour and N. Shahzad, Best proximity results in regular cone metric spaces, Rend. Circ. Mat. Palermo 60(2011), 323 – 327, DOI: 10.1007/s12215-011-0050-6.

L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), 1468 – 1476, DOI: 10.1016/j.jmaa.2005.03.087.

S. Jankovic, Z. Kadelburg and S. Radenovic, On the cone metric space: A survey, Nonl. Anal. 74(2011), 2591 – 2601, DOI: 10.1016/j.na.2010.12.014.

D. Ilic and V. Rakocevic, Quasi-contraction on a cone metric space, Appl. Math. Lett. 22(5) (2009), 728 – 731, DOI: 10.1016/j.aml.2008.08.011.

G. Jungck, S. Radenovic, S. Radojevic and V. Rakoˇcevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. 2009 2009, 13 pages, DOI: 10.1155/2009/643840.

Z. Kadelburg, S. Radenovic and V. Rakoˇcevic, Remarks on "Quasi-contraction on a cone metric space”, Appl. Math. Lett. 22(11) (2009), 1674 – 1679, DOI: 10.1016/j.aml.2009.06.003.

W. A. Kirk, P. S. Srinavasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (2003), 79 – 89.

A. Latif and M. Abbas and A. Husain, Coincidence best proximity point of Fg-weak contractive mappings in partially ordered metric spaces, Journal of Nonlinear Science and Application 9 (2016), 2448 – 2457, DOI: 10.22436/jnsa.009.05.44.

H. Liu and S. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory and Applications 2013 (2013), Article ID 320, DOI: 10.1186/1687-1812-2013-320.

H. Liu and S. Xu, Fixed point theorem of quasi-contractions on cone metric spaces with Banach algebras, Abstract and Applied Analysis 2013 (2013), Article ID 187348, 5 pages, DOI: 10.1155/2013/187348.

C. Mongkolkeha and P. Kumam, Some common best proximity points for proximity commuting mappings, Optim Lett. 7 (2013), 1825 – 1836, DOI: 10.1007/s11590-012-0525-1.

C. Mongkolkeha, Y. J. Cho and P. Kumam, Best proximity points for Geraghty's proximal contraction mappings, Fixed Point Theo. and Appl. 2013 (2013), 180, DOI: 10.1186/1687-1812-2013-180.

G. Petrusel, Cyclic representations and periodic points, Studia Univ. Babes¸-Bolyai Math. 50 (2005), 107 – 112.

S. Radenovic and B. E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl. 57 (2009), 1701 – 1707, DOI: 10.1016/j.camwa.2009.03.058.

Sh. Rezapour and R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl. 345 (2008), 719 – 724, DOI: 10.1016/j.jmaa.2008.04.049.

Downloads

Published

30-06-2019
CITATION

How to Cite

Hussain, A., Abbas, M., Ahmad, J., & Al-Mazrooei, A. E. (2019). Best Proximity Point Results for Quasi Contractions of Perov Type in Non-Normal Cone Metric Space. Communications in Mathematics and Applications, 10(2), 281–293. https://doi.org/10.26713/cma.v10i2.1079

Issue

Section

Research Article