Some Fixed Point of Hardy-Rogers Contraction in Generalized Complex Valued Metric Spaces

Authors

  • Issara Inchan Department of Mathematics, Faculty of Science and Technology, Uttaradit Rajabhat University
  • Urairat Deepan Department of Mathematics, Faculty of Science and Technology, Uttaradit Rajabhat University

DOI:

https://doi.org/10.26713/cma.v10i2.1077

Keywords:

General Kannan condition, Hardy-Rogers contraction, Class of generalized complex valued metric space

Abstract

In this work, we defined the generalized complex valued metric space for some partial order relation and give some example. Then we study and established a fixed point theorem for general Hardy-Rogers contraction. The results extend and improve some results of Elkouch and Marhrani [5].

Downloads

Download data is not yet available.

References

A. Azam, F. Brain and M. Khan, Common fixed point theorems in complex valued metric space, Numer.Funct.Anal. Optim. 32(3) (2011), 243 – 253.

S. Banach, Sur operations dams les ensembles abstraits et leur application aus equation integral, Fund. Math. 3(1922), 133 – 181.

V. Berinde, Iterative Approximation of fixed points, Lecture Notes in Mathematics, 2nd edition, Springer, Berlin (2007), DOI: 10.1007/978-3-540-72234-2.

S. K. Datta and S. Ali, A common fixed point theorems under contractive condition in complex valued metric space, International Journal of Advanced Scientific and Technical Research 6(2) (2012), 467 – 475.

Y. Elkouch and E. M. Morhrani, On some fixed point theorem in generalized metric space, Fixed Point Theory Applications 23(2017), 17 pages, DOI: 10.1186/s13663-017-0617-9.

G. D. Hardy and T. D. Roger, A generalization of a fixed point theorem of Riech, Can. Math. Bull. 16 (1973), 201 – 206.

M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015 (2015):65, pages 1 – 14, DOI: 10.1186/s13663-015-0312-7.

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71 – 76.

K. Khammahawong and P. Kumam, A best proximity point theorem for Roger–Hardy type generalized F-contractive mappings in complete metric spaces with some examples, Revista de la Real Academia de Ciencias Exactas, Fí­sicas y Naturales. Serie A. Matemáticas 112 (2018), 1503 – 1519, DOI: 10.1007/s13398-017-0440-5.

P. Saipara, P. Kumam and Y. J. Cho, Random fixed point theorems for Hardy-Rogers self-random operators with applications to random integral equations, An International Journal of Probability and Stochastic Processes 90(2) (2018), 297 – 311, DOI: 10.1080/17442508.2017.1346655.

Downloads

Published

30-06-2019
CITATION

How to Cite

Inchan, I., & Deepan, U. (2019). Some Fixed Point of Hardy-Rogers Contraction in Generalized Complex Valued Metric Spaces. Communications in Mathematics and Applications, 10(2), 257–265. https://doi.org/10.26713/cma.v10i2.1077

Issue

Section

Research Article