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1. Introduction
Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, etc. For a detailed

http://doi.org/10.26713/cma.v12i1.587
https://orcid.org/0000-0001-5142-0396
https://orcid.org/0000-0002-7695-2118
https://orcid.org/0000-0001-8185-3539


12 Monotone Iterative Technique for Nonlinear Impulsive Conformable Fractional. . . : C. Thaiprayoon et al.

account of applications and recent results on initial and boundary value problems of fractional
differential equations, we refer the reader to a series of books and papers ([5–11,14,17,19,23–29])
and references cited therein.

Many definitions for the fractional derivative are available. Most of these definitions use an
integral form. The most popular definitions are:

(i) Riemann-Liouville Definition: If n is a positive integer and α ∈ [n−1,n), the derivative of
f is given by

(Dα
a f )(t)= 1

Γ(n−α)
dn

dtn

∫ t

a

f (s)
(t− s)α−n+1 ds.

(ii) Caputo Definition: For α ∈ [n−1,n) the derivative of f is

(CDα
a f )(t)= 1

Γ(n−α)

∫ t

a

f (n)(s)
(t− s)α−n+1 ds.

Among the inconsistencies of the existing fractional derivatives are: Most of the fractional
derivatives, except Riemann-Liouville-type derivatives, do not satisfy Dα

a (1) = 0 if α is not a
natural number; all fractional derivatives do not obey the Product Rule for two functions, the
Quotient Rule for two functions, the Chain Rule, do not have a corresponding Rolle’s Theorem,
and a corresponding Mean Value Theorem etc.

To overcome some of these and other difficulties, Khalil et al. [18], came up with an
interesting idea that extends the familiar limit definition of the derivative of a function, the
conformable fractional derivative. This new theory is improved by Abdeljawad [2].

As a consequence of this new definition, the authors in [18], showed that the conformable
fractional derivative, obeys the Product rule, Quotient rule and has results similar to the Rolle’s
Theorem and the Mean Value Theorem in classical calculus. For recent results on conformable
fractional derivatives we refer the reader to [1,3,4,12,15].

In this paper, we consider the following boundary value problem for impulsive conformable
fractional differential equation with delay:

tk Dαx(t)= f (t, x(t), x(θ(t))), t ∈ J := [0,T], t 6= tk,
∆x(tk)= Ik(x(tk)), k = 1,2, . . . ,m,
x(0)=λx(T),

(1.1)

where aDα denotes the conformable fractional derivative of order 0 < α ≤ 1 starting from
a ∈ {t0, . . . , tm}, t0 = 0< t1 < ·· · < tm < tm+1 = T , f ∈ C(J×R2,R), θ ∈ C(J, J), θ(t)≤ t, Ik ∈ C(R,R),
∆x(tk) = x(t+k )− x(t−k ), λ ∈ R+. Not that if λ = 1 then (1.1) is reduced to the periodic boundary
value problem.

In the year 2016 [13], the authors studied the periodic boundary value problems for impulsive
conformable fractional integro-differential equation of the form

tk Dαx(t)= f (t, x(t), (Fx)(t), (Sx)(t)), t ∈ J, t 6= tk,
∆x(tk)= Ik(x(tk)), k = 1,2, . . . ,m,
x(0)= x(T),

(1.2)

where (Fx)(t) = ∫ t
0 l(t, s)x(s)ds and (Sx)(t) = ∫ T

0 h(t, s)x(s)ds. By using the method of lower
and upper solutions in reversed order coupled with the monotone iterative technique, they
formulated the existence of solutions for impulsive problem (1.2).
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It is well known that the method of upper and lower solutions coupled with its associated
monotone iteration scheme is an interesting and powerful mechanism that offers theoretical as
well constructive existence results for nonlinear problems in a closed set, generated by the lower
and upper solutions; see, for instance, [16,20–22,30]. By mean of two new maximal principles
and new definitions of lower and upper solutions, the monotone iterative technique will be
applied in our investigation of the impulsive problem (1.1).

The rest of the paper is organized as follows: In Section 2 we recall some definitions and
results from conformable fractional calculus. In Section 3 we define the lower and upper
solutions, obtain the Green’s functions and prove two new maximum principles. The existence of
a unique solution for linear problem is proved in this section. The existence results of problem
(1.1) via monotone iterative technique are contained in Section 4, while an example illustrating
the main result is presented in Section 5.

2. Conformable Fractional Calculus
In this section, we recall some definitions, notations and results which will be used in our main
results.

Definition 2.1 ([2]). The conformable fractional derivative starting from a point a of a function
f : [a,∞)→R of order 0<α≤ 1 is defined by

aDα f (t)= lim
ε→0

f (t+ε(t−a)1−α)− f (t)
ε

, (2.1)

provided that the limit exists.

If f is differentiable then aDα f (t)= (t−a)1−α f ′(t). In addition, if the conformable fractional
derivative of f of order α exists on [a,∞), then we say that f is α-differentiable on [a,∞).

The following lemma has been stated in the paper [13].

Lemma 2.2. Let α ∈ (0,1], k1,k2, p,λ ∈R and functions f , g be α-differentiable on [a,∞). Then:
(i) aDα(k1 f +k2 g)= k1aDα( f )+k2aDα(g);

(ii) aDα(t−a)p = p(t−a)p−α;

(iii) aDαλ= 0 for all constant functions f (t)=λ;

(iv) aDα( f g)= f aDαg+ gaDα f ;

(v) aDα
(

f
g

)
= gaDα f− f aDαg

g2 for all functions g(t) 6= 0.

Definition 2.3 ([2]). Let α ∈ (0,1]. The conformable fractional integral starting from a point a
of a function f : [a,∞)→R of order α is defined as

aIα f (t)=
∫ t

a
(s−a)α−1 f (s)ds. (2.2)

Remark 2.4. If a = 0, the definitions of the conformable fractional derivative and integral above
will be reduced to the results in [18].
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3. Auxiliary Impulsive Results
Let J− = J \{t1, t2, . . . , tm}, J0 = [t0, t1], Jk = (tk, tk+1] for k = 1,2, . . . ,m be sub-intervals of J and
the set PC(J,R)= {x : J →R : x(t) is continuous everywhere except for some tk at which x(t−k )
and x(t+k ) exist and x(t−k ) = x(tk), k = 1,2, . . . ,m}. Let E = PC(J,R), then E is a Banach space
with the norm ‖x‖ = supt∈J |x(t)|. A function x ∈ E is called a solution of the impulsive boundary
value problem (1.1) if it satisfies (1.1).

Definition 3.1. A function µ0 ∈ E is called a lower solution of boundary value problem (1.1) if
there exist M > 0 and N,Lk ≥ 0, k = 1,2, . . . ,m, such that{

tk Dαµ0(t)≤ f (t,µ0(t),µ0(θ(t)))−a(t), t ∈ J−,
∆µ0(tk)≤ Ik(µ0(tk))−δk, k = 1,2, . . . ,m.

(3.1)

Analogously, a function ν0 ∈ E is called an upper solution of boundary value problem (1.1) if the
following inequalities{

tk Dαν0(t)≥ f (t,ν0(t),ν0(θ(t)))+b(t)), t ∈ J−,
∆ν0(tk)≥ Ik(ν0(tk))+ηk, k = 1,2, . . . ,m,

(3.2)

hold, where

a(t)=
{

0, µ0(0)≤λµ0(T),
(t−tk)1−α+Mt+Nθ(t)

λT [µ0(0)−λµ0(T)], µ0(0)>λµ0(T),

δk =
{

0, µ0(0)≤λµ0(T)
Lk tk
λT [µ0(0)−λµ0(T)], µ0(0)>λµ0(T),

and

b(t)=
{

0, ν0(0)≥λν0(T),
(t−tk)1−α+Mt+Nθ(t)

λT [ν0(0)−λν0(T)], ν0(0)<λν0(T),

ηk =
{

0, ν0(0)≥λν0(T),
Lk tk
λT [ν0(0)−λν0(T)], ν0(0)<λν0(T).

In our analysis, we use the following notations. For a,b ∈ {0,1,2, . . . ,m} with a ≤ b,

φ(a,b)=
b∏

i=a
e−

M
α (ti+1−ti)α(1−L i+1), (3.3)

where
∏b

i=b+1(·)= 1. Let f = f i(t) for t ∈ Ji , i = 0,1,2, . . . ,m. The impulsive integral notation is
defined as∫ b

a
f (s)d̂s =

∫ tp

a
fp−1(s)ds+

∫ tp+1

tp

fp(s)ds+·· ·+
∫ b

tq

fq(s)ds, a,b ∈ J, (3.4)

where a ≤ tp < ·· · < tq ≤ b.

For clearing the new notations, we consider an example.

Example 3.2. For J = [0,5], tk = k, k = 1,2,3,4, two notations can be expressed as

φ(2,4)=
4∏

i=2
e−

M
α (ti+1−ti)α(1−L i+1)= e−

M
α (t3−t2)α(1−L3) · e−M

α (t4−t3)α(1−L4) · e−M
α (t5−t4)α(1−L5),
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∫ 3.5

0.5
f (s)d̂s =

∫ 1

0.5
f0(s)ds+

∫ 2

1
f1(s)ds+

∫ 3

2
f2(s)ds+

∫ 3.5

3
f3(s)ds.

It is easy to prove the following property.

Property 3.3. Let a ≤ c ≤ b ≤ d be nonnegative integers. The following relations hold:
(i) φ(a, c)φ(c+1,b)=φ(a,b).

(ii) φ(a,b)φ(c,d)=φ(a,d)φ(c,b).

Now, we consider the following boundary value problem of a linear impulsive conformable
fractional differential equation with delay subject to boundary condition as:

tk Dαx(t)=−Mx(t)−Nx(θ(t))+v(t), 0<α≤ 1, t ∈ J−,
∆x(tk)=−Lkx(tk)+γk, k = 1,2, . . . ,m,
x(0)=λx(T),

(3.5)

where M > 0, N ≥ 0, Lk ≥ 0, γk,λ ∈ R, k = 1,2, . . . ,m with λφ(0,m−1) 6= e
M
α (T−tm)α are given

constants and a function v ∈ E.

Lemma 3.4. The problem (3.5) is equivalent to the following impulsive integral equation

x(t)=
∫ T

0
G1(t, s)P(s)d̂s+

m∑
j=1

G2(h, j), t ∈ Jh; h = 0,1,2, . . . ,m, (3.6)

where P(t)=−Nx(θ(t))+v(t),

G1(t, s)=


(s−tl )α−1φ(l,h−1)e

M
α (s−tl )α e

M
α (T−tm)α e−

M
α (t−th)α

e
M
α (T−tm)α−λφ(0,m−1)

, 0≤ s < t ≤ T,

λ(s−tl )α−1φ(0,h−1)φ(l,m−1)e
M
α (s−tl )α e−

M
α (t−th)α

e
M
α (T−tm)α−λφ(0,m−1)

, 0≤ t ≤ s ≤ T,
(3.7)

and

G2(h, j)=


γ jφ( j,h−1)e

M
α (T−tm)α e−

M
α (t−th)α

e
M
α (T−tm)α−λφ(0,m−1)

, 0≤ j < h ≤ T,

λγ jφ(0,h−1)φ( j,m−1)e−
M
α (t−th)α

e
M
α (T−tm)α−λφ(0,m−1)

, 0≤ h ≤ j ≤ T,
(3.8)

with tl =max{tk; k = 0,1, . . . ,m and tk ≤ s}.

Proof. Let x(t) be a solution of the problem (3.5). Multiplying by e
M
α (t−tk)α both sides of the first

equation of problem (3.5) and applying Lemma 2.2(iv), for t ∈ J0,

e
M
α (t−tk)α

tk Dαx(t)+ e
M
α (t−tk)αMx(t)= tk Dα

[
e

M
α (t−tk)αx(t)

]
,

we have

tk Dα
[
e

M
α (t−tk)αx(t)

]= eM
(t−tk)α

α P(t). (3.9)

Using the conformable fractional integral of order α to both sides of (3.9) for t ∈ J0, we get

x(t)= e−
M
α (t−t0)α

[
x(0)+

∫ t

t0

(s− t0)α−1e
M
α (s−t0)αP(s)ds

]
.
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The conformable fractional integration of order α from t1 to t for t ∈ J1, of (3.9) yields

x(t)= e−
M
α (t−t1)α

[
x(t+1 )+

∫ t

t1

(s− t1)α−1e
M
α (s−t1)αP(s)ds

]
.

From x(t+1 )= x(t1)−L1x(t1)+γ1 = (1−L1)x(t1)+γ1 and

x(t1)= e−
M
α (t1−t0)α

[
x(0)+

∫ t1

t0

(s− t0)α−1e
M
α (s−t0)αP(s)ds

]
,

by using (3.3), we deduce that

x(t)= e−
M
α (t−t1)α

[
(1−L1)x(t1)+γ1 +

∫ t

t1

(s− t1)α−1e
M
α (s−t1)αP(s)ds

]
= e−

M
α (t−t1)α

[
(1−L1)e−

M
α (t1−t0)α

(
x(0)+

∫ t1

t0

(s− t0)α−1e
M
α (s−t0)αP(s)ds

)
+

∫ t

t1

(s− t1)α−1e
M
α (s−t1)αP(s)ds+γ1

]
= e−

M
α (t−t1)α

[
φ(0,0)

(
x(0)+

∫ t1

t0

(s− t0)α−1e
M
α (s−t0)αP(s)ds

)
+

∫ t

t1

(s− t1)α−1e
M
α (s−t1)αP(s)ds+γ1

]
.

Repeating the above process, for t ∈ Jh, we have

x(t)= e−
M
α (t−th)α

(
φ(0,h−1)x(0)+

h−1∑
j=0

φ( j,h−1)
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds

+
∫ t

th

(s− th)α−1e
M
α (s−th)αP(s)ds+

h∑
j=1

γ jφ( j,h−1)
)
. (3.10)

Substituting t = T in (3.10), we get

x(T)= e−
M
α (T−tm)α

(
φ(0,m−1)x(0)+

m∑
j=0

φ( j,m−1)
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds

+
m∑

j=1
γ jφ( j,m−1)

)
.

From the boundary condition x(0)=λx(T), we obtain a constant

x(0)= λ

e
M
α (T−tm)α −λφ(0,m−1)

( m∑
j=0

φ( j,m−1)
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds

+
m∑

j=1
γ jφ( j,m−1)

)
. (3.11)

Putting (3.11) into (3.10), one has

x(t)= e−
M
α (t−th)α

[
λφ(0,h−1)

e
M
α (T−tm)α −λφ(0,m−1)

( m∑
j=0

φ( j,m−1)

×
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds+

m∑
j=1

γ jφ( j,m−1)
)

Communications in Mathematics and Applications, Vol. 12, No. 1, pp. 11–27, 2021



Monotone Iterative Technique for Nonlinear Impulsive Conformable Fractional. . . : C. Thaiprayoon et al. 17

+
h−1∑
j=0

φ( j,h−1)
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds

+
∫ t

th

(s− th)α−1e
M
α (s−th)αP(s)ds+

h∑
j=1

γ jφ( j,h−1)
]

= λe−
M
α (t−th)α

e
M
α (T−tm)α −λφ(0,m−1)

[ m∑
j=0

φ(0,h−1)φ( j,m−1)

×
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds+

m∑
j=1

γ jφ(0,h−1)φ( j,m−1)

−
h−1∑
j=0

φ(0,m−1)φ( j,h−1)
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds

−φ(0,m−1)
∫ t

th

(s− th)α−1e
M
α (s−th)αP(s)ds−

h∑
j=1

γ jφ(0,m−1)φ( j,h−1)
]

+ e
M
α (T−tm)α

λ

(h−1∑
j=0

φ( j,h−1)
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds

+
∫ t

th

(s− th)α−1e
M
α (s−th)αP(s)ds+

h∑
j=1

γ jφ( j,h−1)
)]

.

Applying Property 3.3 (i) and (ii), we have

x(t)= λe−
M
α (t−th)α

e
M
α (T−tm)α −λφ(0,m−1)

[ m∑
j=h+1

φ(0,h−1)φ( j,m−1)

×
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds+

m∑
j=h+1

γ jφ(0,h−1)φ( j,m−1)

+φ(0,m−1)
∫ th+1

t
(s− th)α−1e

M
α (s−th)αP(s)ds

]

+ e
M
α (T−tm)α

λ

(h−1∑
j=0

φ( j,h−1)
∫ t j+1

t j

(s− t j)α−1e
M
α (s−t j)αP(s)ds

+
∫ t

th

(s− th)α−1e
M
α (s−th)αP(s)ds+

h∑
j=1

γ jφ( j,h−1)
)]

= λe−
M
α (t−th)α

e
M
α (T−tm)α −λφ(0,m−1)

[∫ T

t
(s− tl)α−1φ(0,h−1)φ(l,m−1)e

M
α (s−tl )αP(s)d̂s

+ e
M
α (T−tm)α

λ

∫ t

0
(s− tl)α−1φ(l,h−1)e

M
α (s−tl )αP(s)d̂s

+
m∑

j=h+1
γ jφ(0,h−1)φ( j,m−1)+ e

M
α (T−tm)α

λ

h∑
j=1

γ jφ( j,h−1)
)]

.

Hence, we get the integral equation (3.6).
Conversely, it can easily be shown that the integral equation (3.6) satisfies the impulsive

problem (3.5). The proof is completed.
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Next, we give two new maximum principles.

Lemma 3.5. Let 0<α≤ 1. Assume that x ∈ E satisfies
tk Dαu(t)≤−Mu(t)−Nu(θ(t)), t ∈ J−,
∆u(tk)≤−Lku(tk), k = 1,2, . . . ,m,
u(0)≤λu(T),

(3.12)

where M > 0, N ≥ 0, 0<λ≤ e
M
α (T−tm)α , 0≤ Lk ≤ 1, k = 1,2, . . . ,m are given constants. In addition

suppose that
N

φ(0,m−1)

m∑
i=0

∫ ti+1

ti

(s− ti)α−1e
M
α (s−ti)αds ≤ 1. (3.13)

Then u(t)≤ 0 for all t ∈ J .

Proof. Suppose, to the contrary, that u(t)> 0 for some t ∈ J . Then, the analysis can be separated
in to two cases:

(i) There exists a point t∗ ∈ J , such that u(t∗)> 0 and u(t)≥ 0 for all t ∈ J .
(ii) There exist two points t∗, t∗ ∈ J , such that u(t∗)> 0 and u(t∗)< 0.

Case (i): Setting v(t)= e
M
α (t−tk)αu(t) for t ∈ Jk, k = 0,1,2, . . . then we have

tk Dαv(t)≤−Ne
M
α [(t−tk)α−(θ(t)−tk)α]v(θ(t)), t ∈ J−,

∆v(tk)≤−Lkv(tk), k = 1,2, . . . ,m,

v(0)≤λe−
M
α (T−tm)αv(T).

(3.14)

Observe that, v(t) and u(t) have the same sign. The first inequality of problem (3.14) implies
that tk Dαv(t)≤ 0 and ∆v(tk)≤ 0 for k = 1,2, . . . ,m. Therefore, v(t) is nonincreasing in J . Hence,
we have v(0)≥ v(t∗)> 0. If λ= e

M
α (T−tm)α , then v(0)≤ v(T), and consequently v(0)= v(T), which

implies that v(t)≡ costant, for all t ∈ J . Therefore, u(t)≡ 0, a contradiction. If 0<λ< e
M
α (T−tm)α ,

then
e

M
α (T−tm)α

λ
v(0)≤ v(T)≤ v(0),

which is a contradiction.

Case (ii): Let inf{u(t) : t ∈ J} = −b. Then, we assume that b > 0 and also there exists a point
t∗ ∈ Ji , i ∈ {0,1, . . . ,m}, such that u(t∗) = −b or u(t+i ) = −b. Now, we only consider the case
u(t∗)=−b. For the case u(t+i )=−b, the proof is similar. It is easy to see that

tk Dα
(
e

M
α (t−tk)αu(t)

)
≤ bNe

M
α (t−tk)α . (3.15)

First, we claim that u(T)≤ 0. Otherwise, if u(T)> 0, then by (3.12) and (3.15) we have

u(T)≤ e−
M
α (T−tm)α

(
φ(i+1,m−1)(1−L i+1)u(t−i+1)

+bN
m∑

l=i+1
φ(l,m−1)

∫ tl+1

tl

(s− tl)α−1e
M
α (s−tl )αds

)
. (3.16)

Since ti D
α f (t)= (t− ti)1−α f ′(t) and (3.12), we obtain

u(t−i+1)≤ e−
M
α (ti+1−ti)α

(
e

M
α (t∗−ti)αu(t∗)+bN

∫ ti+1

t∗
(s− ti)α−1e

M
α (s−ti)αds

)
. (3.17)
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From (3.16) and (3.17), we get

u(T)≤ e−
M
α (T−tm)α

(
φ(i,m−1)e

M
α (t∗−ti)αu(t∗)+bNφ(i,m−1)

∫ ti+1

t∗
(s− ti)α−1e

M
α (s−ti)αds

+bN
m∑

l=i+1
φ(l,m−1)

∫ tl+1

tl

(s− tl)α−1e
M
α (s−tl )αds

)
, (3.18)

which leads to

0< u(T)≤ e−
M
α (T−tm)α

(
−bφ(i,m−1)e

M
α (t∗−ti)α +bNφ(i,m−1)

∫ ti+1

t∗
(s− ti)α−1e

M
α (s−ti)αds

+bN
m∑

l=i+1
φ(l,m−1)

∫ tl+1

tl

(s− tl)α−1e
M
α (s−tl )αds

)
.

Thus

φ(i,m−1)e
M
α (t∗−ti)α < Nφ(i,m−1)

∫ ti+1

t∗
(s− ti)α−1e

M
α (s−ti)αds

+N
m∑

l=i+1
φ(l,m−1)

∫ tl+1

tl

(s− tl)α−1e
M
α (s−tl )αds.

Therefore, we have

1< N
φ(0,m−1)

m∑
l=0

φ(l,m−1)
∫ tl+1

tl

(s− tl)α−1e
M
α (s−tl )αds,

a contradiction, and so u(T) ≤ 0. From u(0) ≤ λu(T), we get u(0) ≤ 0. Thus there exist t̄ such
that u(t̄)≤ 0 and t̄ < t∗.

Suppose that t∗ ∈ J j and u(t̄) = inf{u(t) : t ∈ [0, t∗)} = −c ≤ 0, such that t̄ ∈ Jh for some
j,h ∈ {0,1, . . . ,m}. It is easy to see that h ≤ j. As in (3.18), we have

u(t∗)≤ e−
M
α (t∗−t j)α

(
φ(h, j−1)e

M
α (t̄−th)αu(t̄)+ cNφ(h, j−1)

∫ th+1

t̄
(s− th)α−1e

M
α (s−th)αds

+ cN
j−1∑

l=h+1
φ(l, j−1)

∫ tl+1

tl

(s− tl)α−1e
M
α (s−tl )αds+ cN

∫ t∗

t j

(s− t j)α−1e
M
α (s−t j)αds

)
.

Thus

u(t∗)≤ e−
M
α (t∗−t j)α

(
− cφ(h, j−1)e

M
α (t̄−th)α + cNφ(h, j−1)

∫ th+1

t̄
(s− th)α−1e

M
α (s−th)αds

+ cN
j−1∑

l=h+1
φ(l, j−1)

∫ tl+1

tl

(s− tl)α−1e
M
α (s−tl )αds+ cN

∫ t∗

t j

(s− t j)α−1e
M
α (s−t j)αds

)
.

If c = 0, then we get u(t∗)≤ 0 a contradiction. If c > 0, then we obtain that

0< u(t∗)≤ e−
M
α (t∗−t j)α

(
− cφ(h, j−1)e

M
α (t̄−th)α + cNφ(h, j−1)

∫ th+1

t̄
(s− th)α−1e

M
α (s−th)αds

+ cN
j−1∑

l=h+1
φ(l, j−1)

∫ tl+1

tl

(s− tl)α−1e
M
α (s−tl )αds+ cN

∫ t∗

t j

(s− t j)α−1e
M
α (s−t j)αds

)
,

which yields

1< N
φ(0,m−1)

m∑
l=0

∫ tl+1

tl

(s− tl)α−1e
M
α (s−tl )αds,

a contradiction, and so u(t)≤ 0. This is a contradiction to (3.13). The proof is completed.
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Lemma 3.6. Let 0<α≤ 1. Assume that x ∈ E satisfies
tk Dαu(t)≤−Mu(t)−Nu(θ(t))− (t−tk)1−α+Mt+Nθ(t)

λT [u(0)−λu(T)] , t ∈ J−,

∆u(tk)≤−Lku(tk)− Lk tk
λT [u(0)−λu(T)] , k = 1,2, . . . ,m,

u(0)>λu(T),

(3.19)

where 0 < λ≤ e
M
α (T−tm)α , M > 0, N , Lk ≥ 0, k = 1,2, . . . ,m are given constants satisfying (3.13).

Then u(t)≤ 0 for all t ∈ J .

Proof. Setting v(t)= u(t)+ t
λT [u(0)−λu(T)] then we have v ≥ u, and for all t 6= tk, t ∈ J ,

tk Dαv(t)+Mv(t)+Nv(θ(t))

= tk Dαu(t)+Mu(t)+Nu(θ(t))+ (t− tk)1−α+Mt+Nθ(t)
λT

[u(0)−λu(T)]

≤ 0.

It is easy to verify that

∆v(tk)=∆u(tk)≤−Lku(tk)− Lktk

λT
[u(0)−λu(T)]=−Lkv(tk),

and v(0)= u(0), λv(T)= u(0). Then we have v(0)=λv(T). By lemma 3.5, we obtain v(t)≤ 0 for
all t ∈ J , which implies that u(t)≤ 0 for all t ∈ J .

In view of Lemma 3.4, we define the operator A : E → E by

Ax(t)=
∫ T

0
G1(t, s)P(s)d̂s+

m∑
j=1

G2(h, j), (3.20)

where the Green’s functions G1(t, s) and G2(t, s) are defined by (3.7) and (3.8), respectively. Next,
we prove the existence of a unique solution for the linear problem (3.5). For convenience, we set
a constant

Λ :=
max{λ, e

M
α (T−tm)α}N

m∑
i=0

(
e

M
α (ti+1−ti)α −1

)
M

∣∣e M
α (T−tm)α −λφ(0,m−1)

∣∣ .

Lemma 3.7. Assume that α ∈ (0,1], M,λ> 0, N ≥ 0, 0≤ Lk ≤ 2, k = 1,2, . . . ,m and λφ(0,m−1) 6=
e

M
α (T−tm)α . If

Λ< 1, (3.21)

then the boundary value problem (3.5) has a unique solution on J .

Proof. Case I. For 0≤ s < t ≤ T , we see that∣∣(s− tl)α−1φ(l,h−1)e
M
α (s−tl )α e

M
α (T−tm)α e−

M
α (t−th)α∣∣≤ (s− tl)α−1e

M
α (s−tl )α e

M
α (T−tm)α .

Case II. For 0≤ t ≤ s ≤ T , we have∣∣λ(s− tl)α−1φ(0,h−1)φ(l,m−1)e
M
α (s−tl )α e−

M
α (t−th)α∣∣≤λ(s− tl)α−1e

M
α (s−tl )α .

From Cases I and II, it follows that

|G1(t, s)| ≤ max
{
λ, e

M
α (T−tm)α}(s− tl)α−1e

M
α (s−tl )α∣∣e M

α (T−tm)α −λφ(0,m−1)
∣∣ .
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Now, we transform the problem (3.5) into a fixed point problem x =Ax, where the operator
A is defined by (3.20). For any x, y ∈ E, we have

‖Ax−Ay‖ ≤ ‖x− y‖N
∫ T

0
|G1(t, s)|d̂s

≤ ‖x− y‖ N max
{
λ, e

M
α (T−tm)α}∣∣e M

α (T−tm)α −λφ(0,m−1)
∣∣
∫ T

0
(s− tl)α−1e

M
α (s−tl )α d̂s

≤Λ‖x− y‖.

As Λ< 1, A is a contraction. Therefore, by the Banach’s contraction mapping principle, A has a
fixed point which is the unique solution of problem (3.5). The proof is completed.

4. Main Results
For functions µ0,ν0 ∈ E, we let

[µ0,ν0]= {x ∈ E : µ0(t)≤ x(t)≤ ν0(t), t ∈ J},

and we write µ0 ≤ ν0 if µ0(t)≤ ν0(t) for all t ∈ J .

Theorem 4.1. Assume that the following conditions hold:
(H1) the functions µ0 and ν0 are lower and upper solutions of boundary value problem (1.1),

respectively, such that µ0(t)≤ ν0(t) on J;

(H2) the function f ∈ C(J×R2,R) satisfies

f (t,u,v)− f (t,u,v)≥−M(u−u)−N(v−v),

for µ0(t)≤ u(t)≤ u(t)≤ ν0(t), µ0(θ(t))≤ v(t)≤ v(t)≤ ν0(θ(t)), t ∈ J;

(H3) the functions Ik ∈ C(R,R), k = 1, . . . ,m satisfy

Ik (u(tk))− Ik (v(tk))≥−Lk(u(tk)−v(tk)),

whenever µ0(tk)≤ v(tk)≤ u(tk)≤ ν0(tk), Lk ≥ 0, k = 1,2, . . . ,m;

(H4) two inequalities (3.13) and (3.21) hold.
Then there exist two monotone sequences {µn}, {νn}⊂ E such that lim

n→∞µn(t)= x∗(t), lim
n→∞νn(t)=

x∗(t) uniformly on J and functions x∗, x∗ are minimal and maximal solutions of problem (1.1),
respectively, such that

µ0 ≤µ1 ≤µ2 ≤ ·· · ≤µn ≤ x∗ ≤ x ≤ x∗ ≤ νn ≤ ·· · ≤ ν2 ≤ ν1 ≤ ν0,

on J, where x is any solution of the boundary value problem (1.1) such that µ0(t)≤ x(t)≤ ν0(t)
on J .

Proof. First, we consider the problem

tk Dαpn(t)= f (t, pn−1(t), pn−1(θ(t)))−M[pn(t)− pn−1(t)]

−N[pn(θ(t))− pn−1(θ(t))], t ∈ J−,

∆pn(tk)= Ik(pn−1(tk))− [Lk pn(tk)−Lk pn−1(tk)], k = 1,2, . . . ,m, (4.1)

pn(0)=λpn(T),

where pn =µn or pn = νn, n = 1,2, . . . . By Lemma 3.7, the iteration formula (4.1) has a unique
solution. Next, we show that the sequences {µn} and {νn} are monotone sequences in two steps.

Communications in Mathematics and Applications, Vol. 12, No. 1, pp. 11–27, 2021



22 Monotone Iterative Technique for Nonlinear Impulsive Conformable Fractional. . . : C. Thaiprayoon et al.

Step 1. We claim that µ0 ≤µ1 and ν1 ≤ ν0. Let u(t)=µ0 −µ1, then from Definition 3.1 and (4.1),
we have:

Case 1. µ0(0)≤λµ0(T). Then we have

tk Dαu(t)= tk Dαµ0(t)− tk Dαµ1(t)
≤ f (t,µ0(t),µ0(θ(t)))− f (t,µ0(t),µ0(θ(t)))+M[µ1(t)−µ0(t)]+N[µ1(θ(t))−µ0(θ(t))]
=−Mu(t)−Nu(θ(t)), t ∈ J−,

∆u(tk)=∆µ0(tk)−∆µ1(tk)
≤ Ik

(
µ0(tk)

)− [
Ik

(
µ0(tk)

)−Lkµ1(tk)+Lkµ0(tk)
]

=−Lku(tk), k = 1,2, . . . ,m,

and

u(0)=µ0(0)−µ1(0)
≤λµ0(T)−λµ1(T)
=λu(T).

Using Lemma 3.5, we get that u(t)≤ 0 for all t ∈ J, i.e., µ0 ≤ µ1. Similarly, we can prove that
ν1 ≤ ν0.

Case 2. µ0(0)>λµ0(T). Then we have

tk Dαu(t)= tk Dαµ0(t)− tk Dαµ1(t)

≤ f (t,µ0(t),µ0(θ(t)))− (t− tk)1−α+Mt+Nθ(t)
λT

[
µ0(0)−λµ0(T)

]
− f (t,µ0(t),µ0(θ(t)))+M[µ1(t)−µ0(t)]+N[µ1(θ(t))−µ0(θ(t))]

=−Mu(t)−Nu(θ(t))− (t− tk)1−α+Mt+Nθ(t)
λT

[u(0)−λu(T)] , t ∈ J−,

∆u(tk)=∆µ0(tk)−∆µ1(tk)

≤ Ik(µ0(tk))− Lktk

λT
[µ0(0)−λµ0(T)]− [

Ik(µ0(tk))−Lkµ1(tk)+Lkµ0(tk)
]

=−Lku(tk)− Lktk

λT
[u(0)−λu(T)], k = 1,2, . . . ,m,

and

u(0)=µ0(0)−µ1(0)
>λµ0(T)−λµ1(T)
=λu(T).

Using Lemma 3.6, again we have u(t)≤ 0 for all t ∈ J , i.e., µ0 ≤µ1. Similarly, we can prove that
ν1 ≤ ν0.

Step 2. We show that µn ≤ µn+1, where µn−1 ≤ µn on J. Setting a function u = µn −µn+1, then
for t ∈ J and by (H2), we obtain

tk Dαu(t)= tk Dαµn(t)− tk Dαµn+1(t)
= f (t,µn−1(t),µn−1(θ(t)))−M[µn(t)−µn−1(t)]−N[µn(θ(t))−µn−1(θ(t))]
− f (t,µn(t),µn(θ(t)))+M[µn+1(t)−µn(t)]+N[µn+1(θ(t))−µn(θ(t))]

≤−Mu(t)−Nu(θ(t)), t ∈ J−,
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and by (H3),

∆u(tk)=∆µn(tk)−∆µn+1(tk)
= Ik(un−1(tk))− [Lkun(tk)−Lkun−1(tk)]− Ik(un(tk))+ [Lkun+1(tk)−Lkun(tk)]
≤−Lku(tk), k = 1,2, . . . ,m.

It is easy to see that

u(0)=µn(0)−µn+1(0)=λµn(T)−λµn+1(T)=λu(T).

Then, from Lemma 3.5, we get u(t) ≤ 0, which yields µn ≤ µn+1. Similarly, we can prove that
νn+1 ≤ νn where νn ≤ νn−1 and µn+1 ≤ νn+1, where µn ≤ νn on J .

From Steps 1 and 2, we have that the two sequences {µn}, {νn} satisfy the following
inequalities

µ0 ≤µ1 ≤ ·· · ≤µn ≤ ·· · ≤ νn ≤ ·· · ≤ ν1 ≤ ν0.

Therefore, there exist functions x∗ and x∗ on J, such that lim
n→∞µn = x∗ and lim

n→∞νn = x∗

uniformly on J . Clearly, x∗, x∗ are solutions of boundary value problem (1.1).
Finally, we will show that x∗, x∗ are minimal and maximal solutions of the problem (1.1).

Let x(t) be any solution of problem (1.1) for t ∈ J, such that x ∈ [µ0,ν0]. Then there exists a
positive integer n such that µn(t)≤ x(t)≤ νn(t) on J . Let u =µn+1 − x, then for t ∈ J , we have

tk Dαu(t)= tk Dαµn+1(t)− tk Dαx(t)
= f (t,µn(t),µn(θ(t)))−M[µn+1(t)−µn(t)]−N[µn+1(θ(t))−µn(θ(t))]− f (t, x(t), x(θ(t)))
≤−Mu(t)−Nu(θ(t)), t ∈ J−,

∆u(tk)=∆µn+1(tk)−∆x(tk)
= Ik(µn(tk))− (Lkµn+1(tk)−Lkµn(tk))− Ik(x(tk))
≤−Lku(tk), k = 1,2, . . . ,m,

and

u(0)=µn+1(0)− x(0)=λµn+1(T)−λx(T)≤λu(T).

Therefore, using Lemma 3.5, we have u(t) ≤ 0, which leads to µn+1 ≤ x on J. By similarly
method, we can prove that x ≤ νn+1 on J. From µ0 ≤ x ≤ ν0 on J, by mathematical induction,
we get that µn ≤ x ≤ νn on J for all n ∈N. Hence, by taking n →∞, we have x∗(t)≤ x(t)≤ x∗(t)
on J . The proof is complete.

5. An Example
In this section, in order to illustrate our results, we consider an example.

Example 5.1. Consider the BVP
tk D5/7x(t)=− t

5 x(t)+ t
7 cos x

( t
2

)− t
6 , t ∈ [0,1]\

{1
3

}
,

∆x
(1

3

)=−1
3 x

(1
3

)
, k = 1,

x(0)= 1.13x(1),

(5.1)

where α= 5/7, θ = t/2, t1 = 1/3, λ= 1.13, m = 1.
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Obviously, µ0 =
{
−7, t ∈ [0,1/3],
−6, t ∈ (1/3,1],

ν0 = 0 are lower and upper solutions for (5.1), respectively,

and µ0 ≤ ν0. Let

f (t,u,v)=− t
5

u+ t
7

cosv− t
6

.

Then

f (t,u,v)− f (t, ū, v̄)=− t
5

u+ t
7

cosv+ t
5

ū− t
7

cos v̄

≥− t
5

(u− ū)− t
7

(v− v̄) ,

for µ0(t)≤ u(t)≤ u(t)≤ ν0(t), µ0(θ(t))≤ v(t)≤ v(t)≤ ν0(θ(t)), t ∈ J . It is easy to see that

I1(u)− I1(v)=−1
3

(u−v)

whenever µ0(t1)≤ v(t1)≤ u(t1)≤ ν0(t1).
Taking M = 1/5, N = 1/7, L1 = 1/3, it follow that

N
φ(0,m−1)

m∑
i=0

∫ ti+1

ti

(s− ti)α−1e
M
α (s−ti)αds = 0.449772989≤ 1,

and

Λ :=
max

{
λ, e

M
α (T−tm)α}N

m∑
i=0

(
e

M
α (ti+1−ti)α −1

)
M

∣∣e M
α (T−tm)α −λφ(0,m−1)

∣∣ = 0.8848227489< 1.

Therefore, the conditions of Theorem 4.1 are satisfied, and therefore the BVP (5.1) has minimal
and maximal solutions in the segment [µ0,ν0].

6. Conclusions
In this paper, we investigated the existence of solutions for boundary value problems of nonlinear
impulsive delay conformable fractional differential equations. The method of upper and lower
solutions coupled with its associated monotone iteration scheme is an interesting and powerful
mechanism that offers theoretical as well constructive existence results for nonlinear problems
in a closed set, generated by the lower and upper solutions. By establishing the associate Green’s
function and a comparison result for the linear impulsive problem, we obtained that the lower
and upper solutions converge to the extremal solutions via the monotone iterative technique.
We illustrated the obtained results by an example.

Acknowledgements
This work was financially supported by the Research Grant of Burapha University through
National Research Council of Thailand (Grant no. 144/2560).

Competing Interests
The authors declare that they have no competing interests.

Communications in Mathematics and Applications, Vol. 12, No. 1, pp. 11–27, 2021



Monotone Iterative Technique for Nonlinear Impulsive Conformable Fractional. . . : C. Thaiprayoon et al. 25

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] T. Abdeljawad, M. Al Horani and R. Khalil, Conformable fractional semigroups of operators,

Journal of Semigroup Theory and Applications 2015 (2015), Article ID 7, 9 pages, URL: http:
//scik.org/index.php/jsta/article/view/2410.

[2] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied
Mathematics 279 (2015), 57 – 66, DOI: 10.1016/j.cam.2014.10.016.

[3] M. Abu Hammad and R. Khalil, Abel’s formula and Wronskian for conformable fractional
differential equations, International Journal of Differential Equations and Applications 13 (2014),
177 – 183, DOI: 10.12732/ijdea.v13i3.1753.

[4] I. Abu Hammad and R. Khalil, Fractional Fourier series with applications, American Journal of
Computational and Applied Mathematics 4 (2014), 187 – 191, DOI: 10.5923/j.ajcam.20140406.01.

[5] B. Ahmad and R. P. Agarwal, Some new versions of fractional boundary value problems with slit-
strips conditions, Boundary Value Problems 2014 (2014), Article number: 175, DOI: 10.1186/s13661-
014-0175-6 .

[6] B. Ahmad, S. K. Ntouyas and A. Alsaedi, New existence results for nonlinear fractional differential
equations with three-point integral boundary conditions, Advances in Difference Equations 2011
(2011) Article ID 107384, 11 pages, DOI: 10.1155/2011/107384.

[7] B. Ahmad and S. K. Ntouyas, Existence results for Caputo type sequential fractional differential
inclusions with nonlocal integral boundary conditions, Journal of Applied Mathematics and
Computing 50 (2016), 157 – 174, DOI: 10.1007/s12190-014-0864-4.

[8] B. Ahmad, S. K. Ntouyas and J. Tariboon, Fractional differential equations with nonlocal integral
and integer-fractional-order Neumann type boundary conditions, Mediterranean Journal of
Mathematics 13 (2016), 2365 – 2381, DOI: 10.1007/s00009-015-0629-9.

[9] B. Ahmad and S. K. Ntouyas, Some fractional-order one-dimensional semi-linear problems under
nonlocal integral boundary conditions, Revista de la Real Academia de Ciencias Exactas, Físicas y
Naturales. Serie A. Matemáticas 110 (2016), 159 – 172, DOI: 10.1007/s13398-015-0228-4.

[10] A. Alsaedi, S. K. Ntouyas and B. Ahmad, New existence results for fractional integro-differential
equations with nonlocal integral boundary conditions, Abstract and Applied Analysis 2015 (2015),
Article ID 205452, 10 pages, URL: https://projecteuclid.org/download/pdfview_1/euclid.
aaa/1429104834.

[11] A. Alsaedi, S. K. Ntouyas, R. P. Agarwal and B. Ahmad, On Caputo type sequential fractional
differential equations with nonlocal integral boundary conditions, Advances in Difference Equations
2015 (2015), Article number: 33, DOI: 10.1186/s13662-015-0379-9.

[12] D. Anderson and D. Ulness, Newly defined conformable derivatives, Advances in Dynamical
Systems and Applications 10 (2015), 109 – 137, URL: https://www.researchgate.net/profile/
Douglas_Anderson6/publication/287216142_Newly_Defined_Conformable_Derivatives/
links/569e53d908ae3bbb87bce643/Newly-Defined-Conformable-Derivatives.pdf.

[13] S. Asawasamrit, S. N. Ntouyas, P. Thiramanus and J. Tariboon, Periodic boundary value problems
for impulsive conformable fractional integro-differential equations, Boundary Value Problems 2016
(2016) Article number: 122, DOI: 10.1186/s13661-016-0629-0.

Communications in Mathematics and Applications, Vol. 12, No. 1, pp. 11–27, 2021

http://scik.org/index.php/jsta/article/view/2410
http://scik.org/index.php/jsta/article/view/2410
http://doi.org/10.1016/j.cam.2014.10.016
http://doi.org/10.12732/ijdea.v13i3.1753
http://doi.org/10.5923/j.ajcam.20140406.01
http://doi.org/10.1186/s13661-014-0175-6
http://doi.org/10.1186/s13661-014-0175-6
http://doi.org/10.1155/2011/107384
http://doi.org/10.1007/s12190-014-0864-4
http://doi.org/10.1007/s00009-015-0629-9
http://doi.org/10.1007/s13398-015-0228-4
https://projecteuclid.org/download/pdfview_1/euclid.aaa/1429104834
https://projecteuclid.org/download/pdfview_1/euclid.aaa/1429104834
http://doi.org/10.1186/s13662-015-0379-9
https://www.researchgate.net/profile/Douglas_Anderson6/publication/287216142_Newly_Defined_Conformable_Derivatives/links/569e53d908ae3bbb87bce643/Newly-Defined-Conformable-Derivatives.pdf
https://www.researchgate.net/profile/Douglas_Anderson6/publication/287216142_Newly_Defined_Conformable_Derivatives/links/569e53d908ae3bbb87bce643/Newly-Defined-Conformable-Derivatives.pdf
https://www.researchgate.net/profile/Douglas_Anderson6/publication/287216142_Newly_Defined_Conformable_Derivatives/links/569e53d908ae3bbb87bce643/Newly-Defined-Conformable-Derivatives.pdf
http://doi.org/10.1186/s13661-016-0629-0


26 Monotone Iterative Technique for Nonlinear Impulsive Conformable Fractional. . . : C. Thaiprayoon et al.

[14] Z. B. Bai and W. Sun, Existence and multiplicity of positive solutions for singular fractional
boundary value problems, Computers & Mathematics with Applications 63 (2012), 1369 – 1381,
DOI: 10.1016/j.camwa.2011.12.078.

[15] H. Batarfi, J. Losada, J. J. Nieto and W. Shammakh, Three-point boundary value problems for
conformable fractional differential equations, Journal of Function Spaces 2015 (2015), Article ID
706383, 6 pages, DOI: 10.1155/2015/706383.

[16] J. Cao and H. Chen, Impulsive fractional differential equations with nonlinear boundary conditions,
Mathematical and Computer Modelling 55 (2012), 303 – 311, DOI: 10.1016/j.mcm.2011.07.037.

[17] J. R. Graef, L. Kong and M. Wang, Existence and uniqueness of solutions for a fractional boundary
value problem on a graph, Fractional Calculus and Applied Analysis 17 (2014), 499 – 510,
DOI: 10.2478/s13540-014-0182-4.

[18] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional
derivative, Journal of Computational and Applied Mathematics 264 (2014), 65 – 70,
DOI: 10.1016/j.cam.2014.01.002.

[19] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam
(2006), URL: https://www.elsevier.com/books/theory-and-applications-of-fractional-
differential-equations/kilbas/978-0-444-51832-3.

[20] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear
Differential Equations, Pitman, Boston (1985).

[21] V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique
for fractional differential equations, Applied Mathematics Letters 21 (2008), 828 – 834,
DOI: 10.1016/j.aml.2007.09.006.

[22] J. Mu, Y. Li, Monotone iterative technique for impulsive fractional evolution equations, Journal of
Inequalities and Applications 2011 (2011), Article number: 125, DOI: 10.1186/1029-242X-2011-125.

[23] S. K. Ntouyas, J. Tariboon and C. Thaiprayoon, Nonlocal boundary value problems for Riemann-
Liouville fractional differential inclusions with Hadamard fractional integral boundary conditions,
Taiwanese Journal of Mathematics 20 (2016), 91 – 107, URL: https://projecteuclid.org/
download/pdf_1/euclid.twjm/1498874423.

[24] S. K. Ntouyas, S. Etemad and J. Tariboon, Existence of solutions for fractional differential inclusions
with integral boundary conditions, Boundary Value Problems 2015 (2015), Article number: 92,
DOI: 10.1186/s13661-015-0356-y.

[25] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional
Differential Equations, to Methods of Their Solution and Some of Their Applications, 1st
edition, Vol. 198, Academic Press, San Diego (1998), URL: https://www.elsevier.com/books/
fractional-differential-equations/podlubny/978-0-12-558840-9.

[26] J. Sabatier, O. P. Agrawal and J. A. T. Machado (eds.), Advances in Fractional Calculus:
Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht
(2007), DOI: 10.1007/978-1-4020-6042-7.

[27] Y. Su and Z. Feng, Existence theory for an arbitrary order fractional differential equation with
deviating argument, Acta Applicandae Mathematicae 118 (2012), 81 – 105, DOI: 10.1007/s10440-
012-9679-1.

Communications in Mathematics and Applications, Vol. 12, No. 1, pp. 11–27, 2021

http://doi.org/10.1016/j.camwa.2011.12.078
http://doi.org/10.1155/2015/706383
http://doi.org/10.1016/j.mcm.2011.07.037
http://doi.org/10.2478/s13540-014-0182-4
http://doi.org/10.1016/j.cam.2014.01.002
https://www.elsevier.com/books/theory-and-applications-of-fractional-differential-equations/kilbas/978-0-444-51832-3
https://www.elsevier.com/books/theory-and-applications-of-fractional-differential-equations/kilbas/978-0-444-51832-3
http://doi.org/10.1016/j.aml.2007.09.006
http://doi.org/10.1186/1029-242X-2011-125
https://projecteuclid.org/download/pdf_1/euclid.twjm/1498874423
https://projecteuclid.org/download/pdf_1/euclid.twjm/1498874423
http://doi.org/10.1186/s13661-015-0356-y
https://www.elsevier.com/books/fractional-differential-equations/podlubny/978-0-12-558840-9
https://www.elsevier.com/books/fractional-differential-equations/podlubny/978-0-12-558840-9
http://doi.org/10.1007/978-1-4020-6042-7
http://doi.org/10.1007/s10440-012-9679-1
http://doi.org/10.1007/s10440-012-9679-1


Monotone Iterative Technique for Nonlinear Impulsive Conformable Fractional. . . : C. Thaiprayoon et al. 27

[28] J. Tariboon, S. K. Ntouyas and P. Thiramanus, Riemann-Liouville fractional differential equations
with Hadamard fractional integral conditions, International Journal of Applied Mathematics
and Statistics 54 (2016), 119 – 134, URL: http://www.ceser.in/ceserp/index.php/ijamas/
article/view/3949.

[29] J. Tariboon, S. K. Ntouyas and W. Sudsutad, Fractional integral problems for fractional differential
equations via Caputo derivative, Advances in Difference Equations 2014 (2014), Article number:
181, DOI: 10.1186/1687-1847-2014-181.

[30] L. Zhang and Y. Liang, Monotone iterative technique for impulsive fractional evolution equations
with noncompact semigroup, Advances in Difference Equations 2015 (2015), Article number: 324,
DOI: 10.1186/s13662-015-0665-6.

Communications in Mathematics and Applications, Vol. 12, No. 1, pp. 11–27, 2021

http://www.ceser.in/ceserp/index.php/ijamas/article/view/3949
http://www.ceser.in/ceserp/index.php/ijamas/article/view/3949
http://doi.org/10.1186/1687-1847-2014-181
http://doi.org/10.1186/s13662-015-0665-6

	Introduction
	Conformable Fractional Calculus
	Auxiliary Impulsive Results
	Main Results
	An Example
	Conclusions
	References

