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1. Introduction
Schrödinger equation is a partial differential equation (PDE) used in quantum mechanics for
the description of how the quantum state of a physical system changes with respect to time.
This appears in two forms: the time dependent Schrödinger wave equation (TDSWS) and the
time independent Schrödinger equation (TISE) [15].

The application of Schrödinger equation is of great interest in Physics and other aspects of
applied science [12]. Meanwhile, fractional Schrödinger equation is a basic equation of fractional
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quantum mechanics, as discovered and coined by Laskin [8, 9]. It is a generalization of the
classical quantum mechanics.

The time-fractional Schrödinger equation is of the form:

i
∂αu
∂tα

+λ∂
2u
∂x2 + p(x)u+ξ|u|2u = 0 (1.1)

with an initial condition:

h(x)= u(x,0), i2 =−1 , (1.2)

where the function u = u(x, t) is complex, λ and ξ are constants and p(x) is a function of x.
A special case of (1.1) based on some conditions will be considered for the linear forms

of (1.1).
In recent years, regard has been given to the study of fractional calculus; it appears most

suitable for the generalization of fractional differential equations [13,18]. Fractional differential
equations are seen as alternative methods to non-linear differential equations [14].

In this work, a relatively new version of the modification referred to as modified differential
transform method (MDTM) will be applied to linear Schrödinger equations for exact and
numerical solutions. It is noteworthy to say here that the MDTM has advantages over the
decomposition methods and the classical DTM as the computational time required is minimal,
and for ease and simplicity of usage.

2. Fractional Calculus: Preliminaries and Notations
In this section, we give a brief introduction of fractional calculus with regards to its preliminaries,
basic definitions and notations [1,2,10].

In fractional calculus, the power of the differential operator is considered a real or complex
number. Hence, the following definitions:

Definition 2.1 (Fractional derivative in gamma sense). Suppose D = d(·)
dx and J are differential

and integration operators respectively, such that, the gamma function of h(x) is defined as:

Γ(n)=
∫ ∞

0
e−xtn−1dt, Re(n)> 0, Γ(n+1)= n!, Γ(1/2)=p

π . (2.1)

Equation in terms of gamma sense is expressed as:

Dαh(x)= dαh(x)
dxα

= Γ(k+1)
Γ(k−α+1)

xk−α . (2.2)

We referred to as a fractional derivative of h(x), of order α, if α ∈R.
Suppose h(x)= xk (a monomial, of degree k, not necessarily a fraction), then:

Dh(x)= dh(x)
dx

= kxk−1, D2h(x)= d2h(x)
dx2 = k(k−1)xk−2 = k!

(k−2)!
xk−2 . (2.3)

In general,

dmh(x)
dxm = k!

(k−m)!
xk−m . (2.4)
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Definition 2.2. Suppose h(x) is defined for x > 0, then:

(Jh)(x)=
∫ x

0
h(s)ds (2.5)

and as such, an arbitrary extension of (2.5) (i.e. Cauchy formula for repeated integration) yields:

(Jnh)(x)= 1
(n−1)!

∫ x

0
(x− s)n−1h(s)ds . (2.6)

Thus, the gamma sense of (2.6) is:

(Jαh)(x)= 1
Γ(α)

∫ x

0
(x− s)α−1h(s)ds, α> 0, t > 0. (2.7)

Equation (2.7) is the Riemann-Liouville fractional integration of order α.

Definition 2.3 (Riemann-Liouville fractional derivative).

Dαh(x)= dφ(Jφ−αh(x))
dxφ

. (2.8)

Definition 2.4 (Caputo fractional derivative).

Dα f (x)= Jφ−α(dφ f (x))
dxφ

, φ−1<α<φ, φ ∈N . (2.9)

Note 2.1. In (2.8), Riemann-Liouville compute first, the fractional integral of the function and
thereafter, an ordinary derivative of the obtained result but the reverse is the case in Caputo
sense of fractional derivatives; this allows the inclusion of the traditional initial and boundary
conditions in the formulation of the problem.

Note 2.2. The link between the Riemann-Liouville operator and the Caputo fractional
differential operator (see [16, Lemma 4]) is:

(JαDα
t )h(t)= (D−α

t Dα
t )h(t)= h(t)−

n−1∑
k=0

hk(0)
tk

k!
, n−1<α< n, n ∈N . (2.10)

As such,

h(t)= (JαDα
t )h(t)+

n−1∑
k=0

hk(0)
tk

k!
. (2.11)

Definition 2.5 (The Mittag-Leffler Function). The Mittag-Leffler function, Eα(z) valid in the
whole complex plane is defined and denoted by the series representation as:

Eα(z)=
∞∑

k=0

zk

Γ(1+αk)
, α≥ 0, z ∈C . (2.12)

Remark 2.1. For α= 1, the Mittag-Leffler function, Eα(z) in (2.12) becomes:

Eα=1(z)= ez . (2.13)
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3. A Two-dimensional DTM
Let $(x, y) be a two-variable function analytic at (x∗, y∗) in the Domain, D, then, the differential
transform of $(x, y) is defined and denoted as:

Ψ(k,h)= 1
k!h!

[
∂k+h$(x, y)
∂xk∂yh

]
(x,y)=(x∗,y∗)

(3.1)

where the differential inverse transform of Ψ(k,h) is:

$(x, y)=
∞∑

k=0

∞∑
h=0

Ψ(k,h)(x− x∗)k(y− y∗)h . (3.2)

The differential transformation method (DTM) has been studied by many researchers and
showed to be easier in terms of application when solving both linear and nonlinear differential
equations as it converts the said problems to their equivalents in algebraic recursive forms.
This is unlike other semi-analytical methods: ADM, VIM, HAM and so on that require the
determination of a successive term only by integrating a previous component (term) [5,7,11,17].

In spite of the many advantages of the DTM over other semi-analytical methods, some levels
of difficulties are still met when dealing mainly with nonlinearity of differential equations.
This again creates rooms for modification of the DTM in various forms by many authors and
researchers [4,6].

3.1 The Overview of the Modified Differential Transform Method (MDTM)
Let v(x, t) be an analytic function at (x∗, t∗) in a domain D, then in considering the Taylor series
of v(x, t), regard is given to some variables sov = t instead of all the variables as in the classical
DTM. Thus, the MDTM of v(x, t) with respect to t at t∗ is defined and denoted by:

V (x,h)= 1
h!

[
∂hv(x, t)
∂th

]
t=t∗

(3.3)

and as such:

v(x,h)=
∞∑

h=0
M(x,h)(t− t∗)h . (3.4)

Equation (3.4) is called the modified differential inverse transform of V (x,h) with respect to t.

3.1.1 Basic Theorems and Properties of the MDTM [6]

Theorem 3.1. If v(x, t)=αva(x, t)±βvb(x, t), then V (x,h)=αVa(x,h)±βVb(x,h) .

Theorem 3.2. If v(x, t)= α∂nv∗(x, t)
∂tn , then V (x,h)= α(h+n)!

h!
V∗(x,h+n).

Theorem 3.3. If v(x, t)= α∂v∗(x, t)
∂t

, then V (x,h)= α(h+1)!V∗(x,h+1)
h!

=α(h+1)V∗(x,h+1).

Theorem 3.4. If v(x, t)= p(x)∂nv∗(x, t)
∂xn , then V (x,h)= p(x)∂nV∗(x,h)

∂xn .
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Theorem 3.5. If v(x, t)= p(x)v2∗(x, t), then V (x,h)= p(x)
h∑

r=0
V∗(x, r)V∗(x,h− r).

Theorem 3.6 (PDTM of a fractional derivative). If f (x, t)= Dα
t w(x, t), then

Γ

(
1+ k

q

)
F(x,k)=Γ(1+α+ k

q
)W(x,k+αq).

Consequently, we have:

Γ

(
1+α+ k

q

)
W(x,k+αq)=Γ

(
1+ k

q

)
F(x,k) . (3.5)

Setting αq = 1 in (3.5) gives:

W (x,k+1)= Γ (1+αk)
Γ (1+α (1+k))

F (x,k) . (3.6a)

As such, for w (x, t) , α-analytic at x0 = 0

w (x, t)=
∞∑

h=0
W (x,h) t

h
q =

∞∑
h=0

W (x,h) tαh . (3.6b)

3.2 Analysis of the Fractional DTM
Consider the nonlinear fractional differential equation (NLFDE):

Dα
t w(x, t)+L[x]w(x, t)+N[x]w(x, t)= q(x, t), w(x,0)= g(x), t > 0 , (3.7)

where Dα
t = ∂α

∂tα is the fractional Caputo derivative of w = w (x, t); whose projected differential
transform is W(x,h), L[·] and N[·] are linear and nonlinear differential operators with respect to
x respectively, while q = q(x.t) is the source term.

We rewrite (3.7) as:

Dα
t w(x, t)=−L[x]w(x, t)−N[x]w(x, t)+ q(x, t), w(x,0)= g(x), n−1<α< n, n ∈R . (3.8)

Applying the inverse fractional Caputo derivative, D−α
t to both sides of (3.8) and with regard to

(2.10) gives:

w(x, t)= g(x)+D−α
t [−L[x]w(x, t)−N[x]w(x, t)+ q(x, t)], w(x,0)= g(x) . (3.9)

Thus, expanding the analytical and continuous function, u(x, t) in terms of fractional power
series, the inverse projected differential transform of W(x,h) is given as follows:

w(x, t)=
∞∑

h=0
W(x,h)tαh = w(x,0)+

∞∑
h=1

W(x,h)tαh, w(x,0)= g(x) . (3.10)
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4. Illustrative Examples and Applications
In this subsection, the proposed method is applied with some illustrative examples for the
solutions of time-fractional linear Schrödinger equations resulting from (1.1) when λ = −1,
p(x)= 0 and ξ= 0.
Problem 4.1. Consider the time-fractional linear Schrödinger Equation ([3,11] for α= 1):

wα
t + iwxx = 0 and w(x,0)= e3ix . (4.1)

Solution to Problem 4.1. We take the projected differential transform (PDT) of (4.1) as follows:

PDT
[
∂αu
∂tα

+ i
∂2u
∂x2 = 0

]
and PDT[w(x,0)= e3ix] (4.2)

⇒ Γ(1+α(1+k))
Γ(1+αk)

Wx,1+k + iW ′′
x,k = 0 (4.3)

i.e.

Wx,1+k =
−iΓ(1+αk)W ′′

x,k

Γ(1+α(1+k))
, k ≥ 0, Wx,0 = e3ix and W ′′

x,0 =−9e3ix . (4.4)

So, when k = 0,

Wx,1 = −Γ(1)
Γ(1+α)

{iW ′′
x,0}

⇒ Wx,1 = 9i
Γ(1+α)

e3ix . (4.5)

Thus,

W ′′
x,1 =

i(9i)2e3ix

Γ(1+α)
(4.6)

when k = 1,

Wx,2 = −iΓ(1+α)
Γ(1+2α)

W ′′
x,1

⇒ Wx,2 = (9i)2

Γ(1+2α)
e3ix . (4.7)

Thus,

W ′′
x,2 =

i(9i)3e3ix

Γ(1+2α)
(4.8)

when k = 2,

Wx,3 = −iΓ(1+2α)
Γ(1+3α)

W ′′
x,2

⇒ Wx,3 = (9i)3

Γ(1+3α)
e3ix . (4.9)
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In general, we have:

Wx,n = (9i)ne3ix

Γ(1+nα)
(4.10)

therefore

wx,t =
∞∑

h=0
Wx,htαh, qh = 1

=Wx,0 +Wx,1tα+Wx,2t2α+Wx,3t3α+·· ·

= e3ix + 9itα

Γ(1+α)
e3ix + (9i)2t2α

Γ(1+2α)
e3ix + (9i)3t3α

Γ(1+3α)
e3ix +·· ·+ (9i)ntnα

Γ(1+nα)
e3ix

= e3ix
[
1+ (9itα)

Γ(1+α)
+ (9itα)2

Γ(1+2α)
+ (9itα)3

Γ(1+3α)
+·· ·+ (9itα)n

Γ(1+nα)

]

= e3ix

[ ∞∑
n=0

(9itα)n

Γ(1+nα)

]
. (4.11)

Thus, by using Definition 2.5, we have that:

wx,t = e3ixEα(9itα) . (4.12)

Note 4.1. For α= 1, w(x, t)= e3i(x+3t) is the exact solution as contained in [3,11].

Problem 4.2. Consider the time-fractional linear Schrödinger Equation ( [3,11] for α= 1):

wα
t + iwxx = 0 and w (x,0)= 1+cosh2x . (4.13)

Solution to Problem 4.2. We take the projected differential transform (PDT) of (4.13) as
follows:

PDT[wα
t + iwxx = 0] and PDT[w(x,0)= 1+cosh2x] (4.14)

⇒ Γ(1+α(1+k))
Γ(1+αk)

Wx,1+k + iW ′′
x,k = 0, Wx,0 = 1+cosh2x and W ′′

x,0 = 4cosh2x (4.15)

i.e

Wx,1+k =
−iΓ(1+αk)W ′′

x,k

Γ(1+α(1+k))
. (4.16)

So, when k = 0,

Wx,1 = −iΓ(1)
Γ(1+α(1+k))

W ′′
x,0

⇒ Wx,1 = 4i cosh2x
Γ(1+α)

. (4.17)
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Thus,

W ′′
x,1 =

−16i cosh2x
Γ(1+α)

when k = 1,

Wx,2 = −iΓ(1+α)
Γ(1+2α)

W ′′
x,1

⇒ Wx,2 = (4i)2 cosh2x
Γ(1+2α)

. (4.18)

Thus,

W ′′
x,2 =

(4i)24cosh2x
Γ(1+2α)

(4.19)

when k = 2,

Wx,3 = −iΓ(1+2α)
Γ(1+3α)

W ′′
x,2

⇒ Wx,3 = −(4i)3 cosh2x
Γ(1+3α)

. (4.20)

Therefore, the solution to Problem 4.2 is:

wx,t =
∞∑

h=0
Wx,htαh, qh = 1

=Wx,0 +Wx,1tα+Wx,2t2α+Wx,3t3α+·· ·

=
{

(1+cosh2x)+
(−4itα cosh2x

Γ(1+α)

)
+

(
(4i)2t2α cosh2x
Γ(1+2α)

)
+·· ·+

(
(4i)ntnα cosh2x
Γ(1+nα)

)}

=
{

1+cosh2x
[
1+ (−4itα)

Γ(1+α)
+ (−4itα)2

Γ(1+2α)
+ (−4itα)3

Γ(1+3α)
+·· ·+ (−4itα)n

Γ(1+nα)

]}

= 1+cosh2x

[ ∞∑
n=0

(−4itα)n

Γ(1+nα)

]
. (4.21)

Thus, by using Definition 2.5, we have that:

wx,t = 1+Eα(−4itα)cosh2x . (4.22)

Remark 4.1. wx,t = 1+ e−4it cosh2x is the exact solution of Problem 4.2 for α= 1.

5. Concluding Remarks
We have considered in this work, both analytic and numerical solutions of time-fractional linear
Schrödinger equations via a proposed semi-analytical method upon the modification of the
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classical Differential Transformation Method (DTM). Some illustrative examples are used; the
results obtained converge faster and rapidly to their exact forms. This shows that this modified
version is very efficient, and reliable, as less computational work is involved, even without given
up accuracy, and no linearization, perturbation or discretization is involved. The method is
therefore, recommended for solving linear and nonlinear time-fractional partial differential
equations (PDEs) with applications in other areas of applied sciences, management, and finance.
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