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1. Introduction
In this section, we will review the concepts of hyperbolic and bihyperbolic numbers, as well as
the k-Fibonacci numbers and some of their properties.

1.1 Hyperbolic Numbers
Hyperbolic numbers [6, 7], 1 can be defined as follows: if x and y are two real numbers, a
bihyperbolic number is z = x+ j y with j2 = 1, j ̸= 1.
The set of hyperbolic numbers is denoted as C+ or H1. The hyperbolic numbers are also called
double numbers, split complex numbers and perplex numbers. For two hyperbolic numbers
z1 = x1 + j y1 and z2 = x2 + j y2 it is possible to define the following operations:

1See URL: https://en.wikipedia.org/wiki/Split-complex_number.
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• Addition: z1 + z2 = (x1 + x2)+ j(y1 + y2).

• Multiplication: z1z2 = (x1x2 + y1 y2)+ j(x1 y2 + x2 y1).

The conjugate of z = x+ j y is z = x− j y and satisfies similar properties to usual complex
conjugate. Namely, z1 + z2 = z1 + z2, (z1z2)= z1 z2, (z)= z.

The modulus of a bihyperbolic number z = x+ j y is ∥z∥2 = zz = x2− y2. Then, ∥z∥ =
√

x2 − y2 if

|x| > |y|, or ∥z∥ =
√

y2 − x2 if |y| > |x|.
A bihyperbolic number is invertible if and only if its modulus is nonzero, ∥z∥ ̸= 0. The
multiplicative inverse of an invertible element is given by z−1 = 1

z = z
z·z = z

∥z∥2 . Then, the
inverse number of z, if exists (∥z∥ ̸= 0), is z−1 = x

x2−y2 − j y
x2−y2 . So, the division of two hyperbolic

numbers, if exists, is z1
z2

= x1x2−y1 y2
x2

2−y2
2

− j x1 y2−x2 y1
x2

2−y2
2

1.2 Bihyperbolic Numbers
Now, we will extend the concept of hiperbolic numbers to the bihyperbolic numbers.

Definition 1. Let H2 be the set of bihyperbolic numbers defined by

z = x0 + j1 x1 + j2 x2 + j3 x3,

where x0, x1, x2, x3 ∈ R and j1, j2, j3 ∉ R are operators such that j2
1 = j2

2 = j2
3 = 1 and j1 j2 = j2 j1 =

j3, j1 j3 = j3 j1 = j2, j2 j3 = j3 j2 = j1.

The addition and multiplication on H2 are commutative and associative. Also, the
multiplication is distributive over addition. Hence (H2,+, ·) is a commutative ring. In this
paper we will study the bihyperbolic k-Fibonacci numbers.

1.3 k-Fibonacci Numbers
One of the more studied integer sequences is the Fibonacci sequence [5, 8], and it has been
generalized in many ways, as [4]. Here, we use the following one-parameter generalization of
the Fibonacci sequence [2,3].

Definition 2. For any integer number k ≥ 1, the k-Fibonacci sequence, say {Fk,n}n∈N is defined
recurrently by:

Fk,0 = 0, Fk,1 = 1 and Fk,n+1 = k Fk,n +Fk,n−1, for n ≥ 1.

The first k-Fibonacci numbers are

{Fk,0,Fk,1,Fk,2,Fk,3,Fk,4,Fk,5, . . .}= {0,1,k,k2 +1,k3 +2k,k4 +3k2 +1, . . .}.

Note that for k = 1 the classical Fibonacci sequence is obtained and for k = 2 it is the Pell
sequence.

The characteristic equation of the definition is r2 = k r+1 whose solutions are σ1 = k+
p

k2+4
2

and σ2 = k−
p

k2+4
2 , that verify σ1 · σ2 = −1, σ1 + σ2 = k, σ1 − σ2 =

p
k2 +4, σ2 = kσ+ 1,

σ1 > 0, σ2 < 0.
Generating function of the k-Fibonacci numbers is f (k, x)= x

1−k x−x2 .
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For the properties of the k-Fibonacci numbers, see [2,3].

Binet Identity : Fk,n = σn
1 −σn

2

σ1 −σ2
, (1.1)

Sum :
n∑

i=0
Fk,i =

1
k

(Fk,n+1 +Fk,n −1), (1.2)

Convolution : Fk,a+b = Fk,aFk,b−1 +Fk,a+1Fk,b. (1.3)

2. On the Bihyperbolic k-Fibonacci Numbers
In [1], the bihyperbolic Fibonacci, Jacobsthal and Pell numbers are studied. We will extend this
concept to the k-Fibonacci numbers.

According to Definition 1, the nth byperbolic k-Fibonacci number BhFk,n is defined as

BhFk,n = Fk,n + j1Fk,n+1 + j2Fk,n+2 + j3Fk,n+3 . (2.1)

Theorem 1 (Recurrence Relation). Let n ≥ 2 be an integer. Then BhFk,n = kBhFk,n−1+BhFk,n−2,
with initial conditions

BhFk,0 = Fk,0 + j1Fk,1 + j2Fk,2 + j3Fk,3 = j1 + j2k+ j3(k2 +1),

BhFk,1 = Fk,1 + j1Fk,2 + j2Fk,3 + j3Fk,4 = 1+ j1k+ j2(k2 +1)+ j3(k3 +2k).

Proof. Taking into account formula (2.1) and Definition of k-Fibonacci numbers:

k ·BhFk,n−1 +BhFk,n−2 = k(Fk,n−1 + j1Fk,n + j2Fk,n+1 + j3Fk,n+2)

+ (Fk,n−2 + j1Fk,n−1 + j2Fk,n + j3Fk,n+1)

= (k Fk,n−1 +Fk,n−2)+ j1(k Fk,n +Fk,n−1)

+ j2(k Fk,n+1 +Fk,n)+ j3(k Fk,n+2 +Fk,n+1)

= Fk,n + j1Fk,n+1 + j2Fk,n+2 + j3Fk,n+3

= BhFk,n .

So, the sequence of bihyperbolic k-Fibonacci numbers {BhFk,n}n∈N is also a k-Fibonacci
sequence, with initial conditions BhFk,0, BhFk,1.

In the next subsection, we give a recurrrence relation between the bihyperbolic k-Fibonacci
numbers.

2.1 Recurrence Relation
Let n ≥ 0 be an integer. The bihyperbolic k-Fibonacci numbers verify the recurrence relation

BhFk,n − j1BhFk,n+1 − j2BhFk,n+2 + j3BhFk,n+3 = k2(Fk,n+4 +Fk,n+2).

Proof.

BhFk,n − j1BhFk,n+1 − j2BhFk,n+2 + j3BhFk,n+3

= Fk,n + j1Fk,n+1 + j2Fk,n+2 + j3Fk,n+3 − j1(Fk,n+1 + j1Fk,n+2 + j2Fk,n+3 + j3Fk,n+4)

− j2(Fk,n+2 + j1Fk,n+3 + j2Fk,n+4 + j3Fk,n+5)+ j3(Fk,n+3 + j1Fk,n+4 + j2Fk,n+5 + j3Fk,n+6)
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= Fk,n + j1Fk,n+1 + j2Fk,n+2 + j3Fk,n+3 − j1Fk,n+1 −Fk,n+2 − j3Fk,n+3 − j2Fk,n+4

− j2Fk,n+2 − j3Fk,n+3 −Fk,n+4 − j1Fk,n+5 + j3Fk,n+3 + j2Fk,n+4 + j1Fk,n+5 +Fk,n+6

= Fk,n −Fk,n+2 −Fk,n+4 +Fk,n+6

= k Fk,n+5 −k Fk,n+1

= k(Fk,n+5 −Fk,n+1)

= k(k Fk,n+4 +Fk,n+3 −Fk,n+3 +k Fk,n+2)

= k2(Fk,n+4 +Fk,n+2).

In the next theorem, we study the Binet formula for these numbers.

Theorem 2 (Binet Identity). For n ∈ N ,

BhFk,n = Aσn
1 −Bσn

2

σ1 −σ2
, (2.2)

where A = 1+ j1σ1 + j2σ
2
1 + j3σ

3
1 and B = 1+ j1σ2 + j2σ

2
2 + j3σ

3
2.

Proof. In [3], it is proven that σn = Fk,nσ+Fk,n−1, for σ = σ1,2. Using this formula and the

Binet Identity (Formula (1.1)) for the k-Fibonacci numbers, Fk,n = σn
1−σn

2
σ1−σ2

,

BhFk,n = Fk,n + j1Fk,n+1 + j2Fk,n+2 + j3Fk,n+3

= 1
σ1 −σ2

(σn
1 −σn

2 + j1(σn+1
1 −σn+1

2 )+ j2(σn+2
1 −σn+2

2 )+ j3(σn+3
1 −σn+3

2 ))

= 1
σ1 −σ2

(σn
1 (1+ j1σ1 + j2σ

2
1 + j3σ

3
1)−σn

2 (1+ j1σ2 + j2σ
2
2 + j3σ

3
2))

= Aσn
1 −Bσn

2

σ1 −σ2
,

where A = 1+ j1σ1 + j2σ
2
1 + j3σ

3
1 and B = 1+ j1σ2 + j2σ

2
2 + j3σ

3
2.

Other form of expressing A and B is the following:

1+ j1σ+ j2σ
2 + j3σ

3 = 1+ j1σ+ j2(kσ+1)+ j3((k2 +1)σ+k)

= (1+ j2 +k j3)+ ( j1 +k j2 + (k2 +1) j3)σ .

If Fk,−n = (−1)n+1Fk,n, last formula is BhFk,−1 + BhFk,0σ, and A and B take the form
A = BhFk,−1 +BhFk,0σ1 and B = BhFk,−1 +BhFk,0σ2.

2.2 Some Properties of A and B
Taking into account the preceding concepts, A = (1+ j2 + j3k)+ (

j1 + j2k+ j3(k2 +1)
)
σ1 and

B = (1+ j2 + j3k)+ (
j1 + j2k+ j3(k2 +1)

)
σ2, and σ1σ2 =−1 it is

A−B = ( j1 + j2k+ j3(k2 +1))(σ1 −σ2)

= BhFk,0

√
k2 +4 ,

A+B = 2(1+ j2 + j3k)+ ( j1 + j2k+ j3(k2 +1))k

= 2+ j1k+ j2(k2 +2)+ j3(k3 +3k)
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= 1+ (Fk,1 + j1Fk,2 + j2Fk,3 + j3Fk,4)+ j2 +k j3

= (1+ j2 +k j3)+BhFk,1,

A ·B = (1+ j2 + j3k)2 + (1+ j2 + j3k)
(
j1 + j2k+ j3(k2 +1)

)
k− ( j1 + j2k+ j3(k2 +1))2

= 1+1+k2 +2 j2 +2 j3k+2 j1k+ j1k+ j2k2 + j3(k3 +k)+ j3k+k2 + j1(k3 +k)

+ j2k2 + j1k3 + (k4 +k2)− (1+k2 + (k4 +2k2 +1)+2 j3k+2 j2(k2 +1)+2 j1(k3 +k))

= 2 j1k+ j3(k3 +2k)

= 2 j1Fk,2 + j3Fk,4 .

Catalan Identity for the k-Fibonacci numbers is [2] Fk,n−rFk,n+r −F2
k,n = (−1)n+r−1F2

k,r . We will
apply this formula to find the Catalan Identity for the bihyperbolic k-Fibonacci numbers.

Theorem 3 (Catalan Identity). Let n ≥ r ≥ 0 be integers. Then

BhFk,n−rBhFk,n+r −BhF2
k,n = (−1)n+r−1(AB)F2

k,r,

where (AB)= 2k j1 + (k3 +2k) j3.

Proof. Because the Binet Identity for the bihyperbolic k-Fibonacci numbers and σ1σ2 =−1,

BhFk,n−r =
Aσn−r

1 −Bσn−r
2

σ1 −σ2
; BhFk,n+r =

Aσn+r
1 −Bσn+r

2

σ1 −σ2
,

BhFk,n−r ·BhFk,n+r =
1

(σ1 −σ2)2

(
A2σ2n

1 +B2σ2n
2 − (AB)(−1)n

((
σ1

σ2

)r
+

(
σ2

σ1

)r))
,

BhF2
k,n = 1

(σ1 −σ2)2 (A2σ2n
1 +B2σ2n

2 −2(AB)(−1)n),

BhFk,n−r ·BhFk,n+r −BhF2
k,n = 1

(σ1 −σ2)2 (AB)(−1)n−1((−1)r(σ2r
1 +σ2r

2 )−2)

= (AB)(−1)n−1(−1)r (σr
1 −σr

2)2

(σ1 −σ2)2

= (AB)(−1)n+r−1F2
k,r .

Corollary 1. If r = 1,

BhFk,n−1 ·BhFk,n+1 −BhF2
k,n = (AB)(−1)n = (2k j1 + (k3 +2k) j3)(−1)n .

2.3 A New Relation
Between the bihyperbolic k-Fibonacci numbers and the k-Fibonacci numbers the following
relation exists.

For n ≥ 0,

BhFk,n = (1+ j2 +k j3)Fk,n +BhFk,0 Fk,n+1 . (2.3)

Proof. Taking into account BhFk,0 = j1+ j2k+ j3(k2+1) and σr = Fk,rσ+Fk,r−1, from the Binet
Identity for the k-Fibonacci numbers (Formula (1.1)),

1+ j1σ+ j2σ
2 + j3σ

3 = 1+ j1σ+ j2(kσ+1)+ j3
(
(k2 +1)σ+k)

)
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= (1+ j2 + j3k)+ ( j1 + j2k+ j3(k2 +1))σ

= (1+ j2 + j3k)+BhFk,0σ ,

BhFk,n = (1+ j2 + j3 k)
σn

1 −σn
2

σ1 −σ2
+BhFk,0

σn+1
1 −σn+1

2

σ1 −σ2

= (1+ j2 + j3 k)Fk,n +BhFk,0 Fk,n+1 .

On the other hand, Fk,−r = (−1)r+1Fk,r → 1+ j2 j3 k = F,−1 + j1Fk,0 + j2Fk,1 + j3Fk,2 = BhFk,−1.
So, BhFk,n = BhFk,−1 Fk,n +BhFk,0 Fk,n+1.

2.4 Sum of the Bihyperbolic k-Fibonacci Numbers
For n ≥ 0,

n∑
i=0

BhFk,i =
1
k

(
BhFk,n+1 +BhFk,n −1+

3∑
i=1

(Fk,i −Fk,i−1) j i

)
.

Proof. From equation (2.3) and taking into account formula (1.2):
n∑

i=0
BhFk,i = (1+ j2 +k j3)

n∑
i=0

Fk,i +BhFk,0

n∑
i=0

Fk,i+1

= (1+ j2 +k j3)
1
k

(Fk,n+1 +Fk,n −1)+BhFk,0

(
1
k

(Fk,n+1 +Fk,n −1)+Fk,n+1 −Fk,0

)
= (1+ j2 +k j3)

1
k

(Fk,n+1 +Fk,n −1)+BhFk,0
1
k

(Fk,n+1 +Fk,n +k Fk,n+1 −1)

= (1+ j2 +k j3)
1
k

(Fk,n+1 +Fk,n −1)+BhFk,0

(
1
k

(Fk,n+2 +Fk,n+1 −1)
)

= 1
k

((1+ j2 +k j3)Fk,n+1 +BhFk,0Fk,n+2 + (1+ j2 +k j3)Fk,n

+BhFk,0Fk,n+1 − ((1+ j2 +k j3)+BhFk,0))

= 1
k

(BhFk,n+1 +BhFk,n − (1+Fk,0 j1 +Fk,1 j2 +Fk,2 j3)+ (Fk,1 j1 +Fk,2 j2 +Fk,3 j3))

= 1
k

(BhFk,n+1 +BhFk,n −BhFk,−1 +BhFk,0).

Theorem 4 (D’Ocagne Identity). Let m ≥ n ≥ 0 be integer numbers. Then

BhFk,mBhFk,n+1 −BhFk,m+1BhFk,n = (−1)n(AB)Fk,m−n .

Proof. Using the Binet Identity for the bihyperbolic k-Fbibonacci numbers (formula (2.2)) and
taking into account σ1 ·σ2 =−1,

BhFk,mBhFk,n+1 −BhFk,m+1BhFk,n

= 1
(σ1 −σ2)2 ((Aσm

1 −Bσm
2 )(Aσn+1

1 −Bσn+1
2 )− (Aσm+1

1 −Bσm+1
2 )(Aσn

1 −Bσn
2 ))

= 1
(σ1 −σ2)2 (AB)(−σm

1 σ
n+1
2 −σn+1

1 σm
2 +σm+1

1 σn
2 +σn

1σ
m+1
2 )

= 1
(σ1 −σ2)2 (AB)(σm

1 σ
n
2 (σ1 −σ2)−σn

1σ
m
2 (σ1 −σ2))

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 525–532, 2024



On the Bihyperbolic k-Fibonacci Numbers: S. Falcon 531

= (AB)
σm

1 σ
n
2 −σn

1σ
m
2

σ1 −σ2

= (AB)(−1)nσ
m−n
1 −σm−n

2

σ1 −σ2

= (−1)n(AB)Fk,m−n .

Using convolution Formula (1.3) of the k-Fibonacci numbers, we will try a similar formula
for bihyperbolic k-Fibonacci numbers.

2.5 Convolution Formula
If n,m are integer numbers n,m ≥ 0 it is verified

BhFk,n+m = Fk,m BhFk,n+1 +Fk,m−1 BhFk,n.

Proof. From the definition, and taking into account the convolution formula for the k-Fibonacci
numbers (1.3):

BhFk,n+m = Fk,n+m + j1Fk,n+m+1 + j2Fk,n+m+2 + j3Fk,n+m+3

= Fk,n+1Fk,m +Fk,nFk,m−1 + j1(Fk,n+2Fk,m +Fk,n+1Fk,m−1)

+ j2(Fk,n+3Fk,m +Fk,n+2Fk,m−1)+ j3(Fk,n+4Fk,m +Fk,n+3Fk,m−1)

= Fk,m(Fk,n+1 + j1Fk,n+2 + j2Fk,n+3 + j3Fk,n+4)

+Fk,m−1(Fk,n + j1Fk,n+1 + j2Fk,n+2 + j3Fk,n+3)

= Fk,mBhFk,n+1 +Fk,m−1BhFk,n

2.6 Generating Function
Following the same process as in [3], we will find the generating function of the bihyperbolic
k-Fibonacci numbers.

Let bhf (x) be the generating function of the sequence of bihyperbolioc k-Fibonacci numbers,
{BhFk,n}n∈N . Then, taking into account that BhFk,m = kBhFk,m−1 +BhFk,m−2 for m ≥ 2,

bhf (x)= BhFk,0 +BhFk,1x+BhFk,2x2 +BhFk,3x3 +·· ·+BhFk,nxn +·· · ,

k bhf (x)x = kBhFk,0x+kBhFk,1x2 +kBhFk,2x3 +·· ·+kBhFk,n−1xn +·· · ,

x2bhf (x)= BhFk,0 x2 +BhFk,1 x3 +·· ·+BhFk,n−2xn +·· · ,

bhf (x)(1−k x− x2)= BhFk,0 +
(
BhFk,1 −kBhFk,0

)
x2 .

On the other hand

BhFk,1 −kBhFk,0 = Fk,1 + (Fk,2 −k Fk,1) j1 + (Fk,3 −k Fk,2) j2 + (Fk,4 −k Fk,3) j3)

= Fk,1 +Fk,0 j1 +Fk,1 j2 +Fk,2 j3

= 1+ j2 +k j3

= BhFk,−1 .

So, the generating function of the bihyperbolic k-Fibonacci numbers is

bhf (x)= j1 +k j2 + (k2 +1) j3 + (1+ j2 +k j3)x
1−k x− x2 .
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