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1. Introduction
The contraction mapping principle in many forms of generalised metric spaces serves as the
foundation for advanced metric fixed point theory. In 1922, Banach [5] demonstrated the
Banach contraction principle related to fixed point theory in metric space. Some examples
of generalized metric space are fuzzy metric (Rano et al. [12]), b-metric (Bakhtin [4], and
Czerwik [6]) space. b-metric space is one of such generalised metric spaces, which was first
introduced by Bakhtin [4], and Czerwik [6]. The renowned Banach contraction principle in
b-metric space was generalised by Bakhtin [4]. Aghajani et al. [1] obtained some fixed point
results in partially ordered b-metric space. Extended b-metric was introduced by Kamran
et al. [10] as a development of the b-metric. Aydi et al. [2] introduced the notion of a new
extended b-metric space. Huang and Zhang [8] created cone metric space in 2007, replacing
the set of real numbers with an ordered Banach space. Kannan [11] presented one of the most
significant generalisations of the Banach contraction principle. Kannan’s work [11] enhanced
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the Banach contraction mapping notion by presenting a new contraction, currently known as
the Kannan contraction. Kannan fixed point results have been extended and generalised in
the establishment of b-metric spaces (Czerwik [6]) and generalised metric spaces (Azam and
Arshad [3]). Hussian and Shah [9] established the concept of cone b-metric space by combining
the notions of b-metric and cone metric. Das and Beg [7] further introduced the notion of
extended cone b-metric space. In this paper we investigate Kannan type contractions within
the framework of new extended b-metric.

2. Preliminaries
Definition 2.1 ([6]). Let X ̸=φ be any set and t ∈ [1,∞). A b-metric is a function B :X×X→ [0,∞)
such that for every x, y, z ∈X the following hold:

(i) B(x, y)= 0 ⇐⇒ x = y,

(ii) B(x, y)=B(y, x),

(iii) B(x, z)≤ t[B(x, y)+B(y, z)].
Then (X,B) is said to be a b-metric space.

Definition 2.2 ([2]). Let X ̸= φ be any set and Θ : X×X×X → [1,∞) be a function. A map
d : X×X→ [0,∞) is said to be an extended b-metric on X if for every x, y, z ∈ X the following
hold:

(i) d(x, y)= 0 ⇐⇒ x = y,

(ii) d(x, y)= d(y, x),

(iii) d(x, z)≤Θ(x, y, z)(d(x, y)+d(y, z)).
Then (X,d) is said an extended b-metric space.

Definition 2.3 ([8]). Let E⊂R be a Banach space. A set P contained in E is said to be a cone if
it satisfies the following:

(i) P is non-empty, closed and P ̸= {0}.

(ii) sx+ ty ∈P whenever x, y ∈P and s, t ∈R≥0.

(iii) x ∈P and −x ∈P implies that x = 0.

Hereafter we assume that P is a cone contained in a real Banach space E.

Definition 2.4 ([8]). A partial ordering ≤ with respect to P is defined as:
(i) x ≤ y ⇐⇒ y− x ∈P and x < y denotes that x ≤ y, x ̸= y.

(ii) x ≪ y indicates that y− x is an element of int(P) (interior P).

Definition 2.5 ([8]). P is said to be normal if there is a positive number N such that x ≤ y implies
that ∥x∥ ≤N∥y∥, for all x, y ∈ E. The smallest N satisfying the above condition of normality is
said to be the normal constant of P.

Hereafter we assume that P has non-empty interior and ≤ denotes the partial ordering with
respect to P.
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Definition 2.6 ([8]). Let X ̸=φ be any set. A cone metric on X is a map d :X×X→E such that
for each x, y, z ∈X the following conditions are satisfied:

(i) d(x, y)> 0,d(x, y)= 0 ⇐⇒ x = y,

(ii) d(x, y)= d(y, x),

(iii) d(x, z)≤ d(x, y)+d(y, z).
Then (X,d) is a cone metric space.

Definition 2.7 ([8]). Let {xn} be a sequence in a cone metric space (X,d) and P be a normal cone
with normal constant N . Then

(i) {xn} is convergent to x if for each u ∈E, 0≪ u, there is a natural number M so that for all
m ≥M, we have d(xn, x)≪ u.

(ii) {xn} is a Cauchy sequence if for each u ∈E, 0≪ u, there is a natural number M so that for
all m,n ≥M, we have d(xn, xm)≪ u.

(iii) (X,d) is complete if every Cauchy sequence converges in X.

Lemma 2.1 ([13]). Let (X,d) be a cone metric space.
(i) For every u1 ≫ 0 and u2 ∈P there exists u3 ≫ 0 such that u ≫ u1 and u ≫ u2.

(ii) For every u1 ≫ 0, u2 ≫ 0 there exists u ≫ 0 such that u ≪ u1 and u ≪ u2.

Definition 2.8 ([7]). Let X ̸= φ be any set and Θ : X×X×X → [1,∞) be a function. A map
dΘ :X×X→E is said to be an extended cone b-metric on X if for every x, y, z ∈X the following
hold:

(i) dΘ(x, y)> 0,dΘ(x, y)= 0 ⇐⇒ x = y,

(ii) dΘ(x, y)= dΘ(y, x),

(iii) dΘ(x, z)≤Θ(x, y, z)(dΘ(x, y)+dΘ(y, z)).
Then (X,dΘ) is said an extended cone b-metric space.

Definition 2.9 ([7]). Let {xn} be a sequence in an extended cone b-metric space (X,dΘ) and P

be a normal cone with normal constant N . Then
(i) {xn} is convergent to x if for each u ∈E, 0≪ u, there is a natural number M so that for all

m ≥M, we have dΘ(xn, x)≪ u.

(ii) {xn} is a Cauchy sequence if for each u ∈E, 0≪ u, there is a natural number M so that for
all m,n ≥M, we have dΘ(xn, xm)≪ u.

(iii) (X,dΘ) is complete if every Cauchy sequence in X converges in X.

Definition 2.10 ([7]). Let (X,dΘ) be an extended cone b-metric space and x∈X, 0≪u. The open
and closed balls in X are defined as B(a,u)={y∈X : dΘ(a, y)≪u} and B[a, y]={y∈X : dΘ(a, y)≤u},
respectively.

Definition 2.11 ([7]). Let (X,dΘ) be an extended cone b-metric and {(xn, yn)} be a sequence in
X×X. Then dΘ is continuous if xn is convergent to x and yn is convergent to y implies that
dΘ(xn, yn) is convergent to dΘ(x, y) in E.

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 583–596, 2024



586 Some New Results in Extended Cone b-metric Space: I. Kour et al.

3. Topological Properties of Extended Cone b-metric Space
Proposition 3.1. The family B= {B(x,u) : u ≫ 0} is a basis for the topology σdΘ on X.

Proof. (i) Let x ∈ X. Then there exists u ≫ 0 such that x ∈ B(x,u). Hence x ∈ B(x,u) ⊆⋃
x∈X,u≫0

B(x,u),

(ii) Let x ∈X, u1 ≫ 0, u2 ≫ 0 such that x ∈B(x,u1)∩B(x,u2). Then by using Lemma 2.1 there
exists u ≫ 0 such that u ≪ u1 and u ≪ u2. Clearly, x ∈B(x,u)⊆B(x,u1)∩B(x,u2).

Definition 3.2. Let (X,dΘ) be an extended cone b-metric space. A set U⊂ (X,dΘ) is said to be
sequentially open if for x ∈U such that xn → x then there exists a natural number N such that
xn ∈U, for all n >N.

Proposition 3.3. Let (X,dΘ) be an extended cone b-metric space. Then, the sequential topology
σ and the topology σdΘ induced by dΘ coincide.

Proof. Suppose U ∈σ. Suppose U ∉σdΘ . Then, there is some x ∈U and u1 ≫ 0 such that B(x,u1)
is not contained in U. Let xn ∈ B(x,u1) such that xn ∉ U for every natural number n. Then
dΘ(xn, x) ≪ u1. This implies that xn → x in (X,dΘ). Since U ∈ σ. Then there exists a natural
number N such that xn ∈U for all n >N, a contradiction. Next suppose that U ∈ σdΘ . For all
x ∈ U such that xn → x in (X,σΘ), we have B(x,u1) ⊂ U, for some u1 ≫ 0. This implies there
exists a natural number N0 such that dθ(xn, x)≪ u1, for all n ≥N0. Hence xn ∈U, for all n ≥N0.
Thus, U ∈σ.

4. Kannan-type Contractions in Extended Cone b-metric Space
Proposition 4.1. Let (X,dΘ) be an extended cone b-metric space and Θ :X×X×X→ [1,∞) be a
map. If there exists s ∈ [0,1) such that the sequence {xn1} satisfies lim

n1,n2→∞Θ(xn1 , xn2 , xn1+1)< 1/s

and

0< dΘ(xn1 , xn1+1)≤ sdΘ(xn1−1, xn1), (4.1)

for n1 ∈N, then the sequence {xn1} is a Cauchy sequence.

Proof. Let {xn1} be a sequence in X. Now,

dΘ(xn1 , xn1+1)≤ sdΘ(xn1−1, xn1)

≤ s2dΘ(xn1−2, xn1−1)
...

≤ sn1 dΘ(x0, x1). (4.2)

Since s ∈ [0,1), we see that

lim
n1→∞dΘ(xn1 , xn1+1)= 0. (4.3)

Using inequality, for n2 ≥ n1, we get

dΘ(xn1 , xn2)≤Θ(xn1 , xn2 , xn1+1)(dΘ(xn1 , xn1+1)+dΘ(xn1+1, xn2))
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=Θ(xn1 , xn2 , xn1+1)dΘ(xn1 , xn1+1)+Θ(xn1 , xn2 , xn1+1)dΘ(xn1+1, xn2)

≤Θ(xn1 , xn2 , xn1+1)sn1 dΘ(x0, x1)

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)(dΘ(xn1+1, xn1+2),dΘ(xn1+2, xn2))

≤Θ(xn1 , xn2 , xn1+1)sn1 dΘ(x0, x1)

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)sn1+1dΘ(x0, x1)+ . . .

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2) . . .Θ(xn2−2, xn2 , xn2−1)sn2−1dΘ(x0, x1)

≤ [Θ(xn1 , xn2 , xn1+1)sn1 +Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)sn1+1 + . . .

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2) . . .Θ(xn2−2, xn2 , xn2−1)sn2−1]dΘ(x0, x1).

Since lim
n1,n2→∞Θ(xn1 , xn2 , xn1+1)s < 1. We see that by ratio test the series

∞∑
n1=1

sn1
n1∏
j=1
Θ(x j, xn2 , x j+1)

converges. Let S=
∞∑

n1=1
sn1

n1∏
j=1
Θ(x j, xn2 , x j+1) and Sn1 =

n1∑
i=1

si
i∏

j=1
Θ(x j, xn2 , x j+1). Therefore,

dΘ(xn1 , xn2)≤ dΘ(x1, x0)[Sn2−1 −Sn1−1]. (4.4)

Letting n1 →∞, we obtain the desired result.

Theorem 4.2. Let (X,dΘ) be a complete extended cone b-metric space and P be a cone in E.
Let f :X→X be a mapping that satisfies:

dΘ( f (x), f (y))≤ s[dΘ(x, f (x))+dΘ(y, f (y))]+ tdΘ(y, f (x)), forall x, y ∈X, (4.5)

where s ∈ (
0, 1

2

)
and t ∈ [0,1). Suppose that

sup
n2≥1

lim
n1→∞Θ(xn1 , xn2 , xn1+1)< 1− s

s
, forall x0 ∈X, (4.6)

such that xn1 = f n1(x0), n1 ∈ N. Then f has a unique fixed point u in X . Moreover, for each
x ∈X, the sequence { f n1(x)} is convergent to u, and

dΘ( f (xn1),u)≤ s
1− t

( s
1− s

)n1
dΘ( f (x0), x0), n1 = 0,1,2, . . . . (4.7)

Proof. Let x0 ∈X be arbitrary. Define

xn1+1 = f (xn1)= f n1+1(x0). (4.8)

Clearly, xn1 is a fixed point of f if xn1 = xn1+1, for some n1 ∈ N. If not, suppose that xn1 and
xn1+1 are distinct points in X for each n1 ≥ 0. Since

dΘ(xn1 , xn1+1)= dΘ( f (xn1−1), f (xn1)). (4.9)

We have

dΘ( f (xn1−1), f (xn1))≤ s[dΘ(xn1−1, f (xn1−1))+dΘ((xn1), f (xn1))]+ tdΘ(xn1 , f (xn1−1)). (4.10)

Then

dΘ(xn1 , xn1+1)≤ s[dΘ(xn1−1, xn1)+dΘ(xn1 , xn1+1)]+ tdΘ(xn1 , xn1). (4.11)

Therefore,

dΘ(xn1 , xn1+1)≤
( s
1− s

)
dΘ(xn1−1, xn1). (4.12)
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Proceeding in the similar manner, we see that

dΘ(xn1 , xn1+1)≤
( s
1− s

)n
dΘ(x0, x1) (4.13)

and

dΘ( f (xn1−1), f (xn1)≤
( s
1− s

)n
dΘ(x0, f (x0)). (4.14)

Suppose n1,n2 are natural numbers such that n2 > n1. By applying triangular inequality, we
have

dΘ(xn1 , xn2)≤Θ(xn1 , xn2 , xn1+1)[dΘ(xn1 , xn1+1)+dΘ(xn1+1, xn2)]

≤Θ(xn1 , xn2 , xn1+1)dΘ(xn1 , xn1+1)

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)[dΘ(xn1+1, xn1+2)+dΘ(xn1+2, xn2)]

≤Θ(xn1 , xn2 , xn1+1)dΘ(xn1 , xn1+1)

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)dΘ(xn1+1, xn1+2)+ . . .

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)

·Θ(xn1+2, xn2 , xn1+3) . . .Θ(xn2−2, xn2 , xn2−1)dΘ(xn2−1, xn2). (4.15)

Since

dΘ(xn1 , xn1+1)≤
( s
1− s

)n1
dΘ(x0, x1), n ≥ 0, (4.16)

we have

dΘ(xn1 , xn2)≤Θ(xn1 , xn2 , xn1+1)
( s
1− s

)n1
dΘ(x0, x1)

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)
( s
1− s

)n1+1
dΘ(x0, x1)+ . . .

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)Θ(xn1+2, xn2 , xn1+3)

. . .Θ(xn2−2, xn2 , xn2−1)
( s
1− s

)n2−1
dΘ(x0, x1)

≤
[
Θ(xn1 , xn2 , xn1+1)

( s
1− s

)n1

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)
( s
1− s

)n1+1 + . . .

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)Θ(xn1+2, xn2 , xn1+3)

. . .Θ(xn2−2, xn2 , xn2−1)
( s
1− s

)n2−1
]
dΘ(x0, x1). (4.17)

Moreover,

sup
n2≥1

lim
n1,n2→∞Θ(xn1 , xn2 , xn1+1)

s
1− s

< 1 . (4.18)

We see that the series
∞∑

n1=1

( s
1−s

)n1
n1∏
j=1
Θ(x j, xn2 , x j+1) is convergent for every natural number n2

by ratio test.
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Next suppose S=
∞∑

n1=1

( s
1−s

)n1
n1∏
j=1
Θ(x j, xn2 , x j+1) and

Sn1 =
n1∑
i=1

( s
1− s

)i i∏
j=1
Θ(x j, xn2 , x j+1). (4.19)

Hence for n2 > n1, using above inequality we have

dΘ(xn1 , xn2)≤ dΘ(x0, x1)(Sn2−1 −Sn1−1) . (4.20)

Then

lim
n→∞dΘ(xn1 , xn2)= 0. (4.21)

Therefore, {xn} is a Cauchy sequence. Since X is complete, there exists u ∈X such that xn1 → u
as n1 →∞.

Claim: u is a fixed point of f .
Since dΘ( f (xn1), f (u))≤ s[dΘ(xn1 , f (xn1))+dΘ(u, f (u))]+ tdΘ(u, f (xn1)). In context of the previous
supposition that dΘ is continuous, taking limit n1 →∞, we have

dΘ(u, f (u))≤ sdΘ(u, f (u)). (4.22)

This is only possible when dΘ(u, f (u))= 0. Hence f (u)= u.
Next we show that fixed point of f is unique. For this, let v be a fixed point of f distinct from u.
Then

dΘ(u,v)= dΘ( f (u), f (v))≤ s[dΘ(u, f (u))+dΘ(v, f (v))]+ tdΘ(u, f (v)). (4.23)

We have

dΘ(u,v)≤ tdΘ(u,v). (4.24)

This is only possible when dΘ(u,v) = 0. Hence u is the unique fixed point of f in X. Also, we
have

dΘ( f (xn1−1), f (xn1))≤ s[dΘ( f (xn1−2), f (xn1−1))+dΘ( f (xn1−1), f (xn1))]+ tdΘ(xn1 , xn1). (4.25)

This implies that

dΘ( f (xn1−1), f (xn1))≤
( s
1− s

)
dΘ( f (xn1−2), f (xn1−1)) . (4.26)

Further,

dΘ( f (xn1),u)≤ s[dΘ( f (xn1−1), f (xn1))+dΘ(u, f (u))]+ tdΘ(u, f (xn1))

≤ sdΘ( f (xn1−1), f (xn1))+ tdΘ(u, f (xn1)) (4.27)

From (4.13), we have

dΘ( f (xn1),u)≤ s
1− t

( s
1− s

)n1
dΘ( f (x0), x0), n ≥ 0. (4.28)

Hence the proof.

Theorem 4.3. Let (X,dΘ) be a complete extended cone b-metric space, dΘ be a continuous
functional and N ̸= φ be a closed set contained in X. Suppose f : N→N be a mapping that
satisfies

dΘ( f (x), f (y))≤ s[dΘ(x, f (x))+dΘ(y, f (y))]+ tdΘ(y, f (x)), for all x, y ∈N, 0≤ s, t ≤ 1 (4.29)
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and there exist real numbers γ,δ where γ ∈ (0,1) and δ> 0 such that for arbitrary x ∈N, there
exists x∗ in N satisfying

dΘ(x∗, f (x∗))≤ γdΘ(x, f (x)),

dΘ(x∗, x)≤ δdΘ(x, f (x)). (4.30)

Moreover, for an arbitrary x0 ∈N, suppose that {xn1 = f n1(x0)} satisfies

sup
n2≥1

lim
n1→∞Θ(xn1 , xn1+1, xn2)< 1

γ
. (4.31)

Then f has a unique fixed point.

Proof. Consider an arbitrary element x0 ∈N. Let {xn1 = f n1(x0)} be a sequence in N. We see that

dΘ( f (xn1+1), xn1+1)≤ γ(dΘ( f (xn1), xn1)),dΘ( f (xn1+1), xn1+1)≤ δdΘ( f (xn1), xn1), n1 ≥ 0. (4.32)

Moreover,

dΘ(xn1+1, xn1)= dΘ( f (xn1), xn1)≤ δdΘ( f (xn1), xn1), n1 ≥ 0,

δdΘ( f (xn1), xn1)≤ δγdΘ( f (xn1−1), xn1−1)

≤ δγ2dΘ( f (xn1−2), xn1−2)
...

≤ δγndΘ( f (x0), x0). (4.33)

Hence

dΘ(xn1+1, xn1)≤ δγndΘ( f (x0), x0). (4.34)

Let n1,n2 be two fixed natural numbers such that n2 > n1. Using triangular inequality, we have

dΘ(xn1 , xn2)≤Θ(xn1 , xn2 , xn1+1)[dΘ(xn1 , xn1+1)+dΘ(xn1+1, xn2)]

≤Θ(xn1 , xn2 , xn1+1)dΘ(xn1 , xn1+1)

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)[dΘ(xn1+1, xn1+2)+dΘ(xn1+2, xn2)]

≤Θ(xn1 , xn2 , xn1+1)dΘ(xn1 , xn1+1)

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)dΘ(xn1+1, xn1+2)+ . . .

+Θ(xn1 , xn2 , xn1+1)Θ(xn1 , xn2 , xn1+2)

·Θ(xn1+2, xn2 , xn1+3) . . .Θ(xn2−2, xn2 , xn2−1)dΘ(xn2−1, xn2) . (4.35)

From (4.34), we have

dΘ(xn1 , xn2)≤ [Θ(xn1 , xn2 , xn1+1)γn1

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)γn1+1dΘ( f (x0, x0))+ . . .

+Θ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn1+2)

·Θ(xn1+2, xn2 , xn1+3) . . .Θ(xn2−2, xn2 , xn2−1)γn2−1]δdΘ( f (x0), x0) . (4.36)

Since sup
n2≥1

lim
n1,n2→∞Θ(xn1 , xn1+1, xn2)γ< 1, the series

∞∑
n1=1

γn1
n1∏
j=1
Θ(x j, xn2 , x j+1) is convergent for

every natural number n2 by ratio test.
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Suppose S=
∞∑

n1=1
γn1

n1∏
j=1
Θ(x j, xn2 , x j+1) and

Sn1 =
n1∑
i=1

γi
i∏

j=1
Θ(x j, xn2 , x j+1). (4.37)

Hence for n2 > n1, using above inequality, we have

dΘ(xn1 , xn2)≤ dΘ(x0, x1)(Sn2−1 −Sn1−1)δ. (4.38)

Suppose n1 →∞. Therefore, {xn} is a Cauchy sequence. Since N is complete, there exists u ∈N
such that xn1 → u as n1 →∞.

We shall show that u is a fixed point of f . By (4.29), we see that

dΘ( f (xn1), f (u))≤ s[dΘ(xn1 , f (xn1))+dΘ(u, f (u))]+ tdΘ(u, f (xn1)).

Therefore,

dΘ(xn1+1, f (u))≤ s[dΘ(xn1 , xn1+1)+dΘ(u, f (u))]+ tdΘ(u, xn1+1).

Letting n →∞ and using the continuity of dΘ, we get

dΘ(u, f (u))≤ sdΘ(u, f (u)). (4.39)

This is only possible when f (u) = u. Next, we shall show that f has a unique fixed point.
If possible, suppose that v is a fixed point of f distinct from u. Then

0< dΘ(u,v)

= dΘ( f (u), f (v))

≤ s[dΘ(u, f (u))+dΘ(v, f (v))]+ tdΘ(v, f (u))

= tdΘ(v,u). (4.40)

Now, dΘ(u,v)≤ tdΘ(u,v) is not possible. Therefore, f has a unique fixed point u in X.

Remark 4.4. Theorem 4.2 can be proved in extended cone b-metric space using the following:

dΘ(u, f (u))≤βdΘ(x, f (x)),

dΘ(u, x)≤ γdΘ(y, f (y)).

Proof. Let x ∈X be arbitrary and u = f (x). Then, we have

dΘ(u, f (u))= dΘ( f (x), f (u))

≤ s[dΘ(x, f (x))+dΘ(u, f (u))]+ tdΘ(u, f (x))

=⇒ dΘ(u, f (u))≤
( s
1− s

)
dΘ(x, f (x)),

where
( s

1−s
) < 1 and dΘ(u, x) = dΘ( f (x), x). Let x0 ∈ X be arbitrary. Next define a sequence

{xn1+1 = f (xn1)}. Using Theorem 4.3, the above sequence is convergent. Hence xn1 → u as
n1 →∞. Therefore, f (u)= u. Moreover for every x ∈X,

dΘ( f (xn1−1), f (xn1))≤ s[dΘ( f (xn1−2), f (xn1−1))+dΘ( f (xn1−1), f (xn1))]+ tdΘ(xn1 , f (xn1−1))

≤
( s
1− s

)
dΘ( f (xn1−2), f (xn1−1)),
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dΘ( f (xn1),u)≤ s[dΘ( f (xn1−1), f (xn1))+dΘ(u, f (u))]+ tdΘ(u, f (xn1))

≤ sdΘ( f (xn1−1), f (xn1))+ tdΘ(u, f (xn1))

≤ s
1− t

( s
1− s

)n
dΘ( f (x), x)), n1 ≥ 0.

Theorem 4.5. Let (X,dΘ) be a complete extended cone b-metric space such that dΘ is a
continuous functional. Suppose that the map f :X→X satisfies

dΘ( f (x), f (y))≤βdΘ(x, f (x))+γdΘ(y, f (y))+δdΘ(x, y)+ tdΘ(x, f (y)), for all x, y ∈X, (4.41)

where β,γ,δ, t ∈R≥0 such that β+γ+δ+ t < 1 and γ+δ> 0. Suppose that for any x0 ∈N,

sup
n2≥1

lim
n1→∞Θ(xn1 , xn2 , xn1+1)< 1

q
, (4.42)

where q =
(
γ+δ
1−β

)
and xn1 = f n1(x0). Then f has a unique fixed point.

Proof. Let x0 ∈X be arbitrary. Consider the sequence { f n1(x0)}. Put x = f n1−1(x0)= f (xn1−1)= xn1

and y= f n1−2(x0)= f (xn1−2)= xn1−1 in (4.41), we get

dΘ( f (xn1), f (xn1−1))≤βdΘ( f (xn1−1), f (xn1))+γdΘ( f (xn1−2), f (xn1−1))

+δdΘ( f (xn1−1), f (xn1−2))+ tdΘ( f (xn1−1), f (xn1−1)). (4.43)

That is,

(1−β)dΘ( f (xn1), f (xn1−1))≤ (γ+δ)dΘ( f (xn1−1), f (xn1−2)). (4.44)

Therefore,

dΘ( f (xn1), f (xn1−1))≤
(
γ+δ

1−β

)
dΘ( f (xn1−1), f (xn1−2)). (4.45)

Also,

dΘ( f (xn1), f (xn1−1))≤ qdΘ( f (xn1−1), f (xn1−2))

≤ q2dΘ( f (xn1−2), f (xn1−3))
...

≤ qn−1dΘ( f (x1), f (xn0)), for all n1 > 1.

Hence we have

dΘ( f (xn1), f (xn1−1))≤ qndΘ(x0, x1), for all n1 ∈N.

By given hypothesis we see that q =
(
γ+δ
1−β

)
< 1. Proceeding similarly as in Theorem 4.3 we

see that {xn1} is a Cauchy sequence. Since X is complete. Then, there exists u ∈ X such that
f n1(x0) → u as n1 →∞. To show that u is fixed point of f , substitute x = f n1(x0) and y = u in
(4.41). We get

dΘ( f n1+1(x0), f (u))≤βdΘ( f n1(x0), f n1+1(x0))+γdΘ(u, f (u))+δdΘ( f n1(x0),u)+ tdΘ( f n1(x0), f (u)).
(4.46)

Hence

dΘ(xn1+2, f (u))≤βdΘ( f n1(x0), f n1+1(x0))+γdΘ(u, f (u))+δdΘ(xn1 ,u)+ tdΘ( f (u), xn1+1), (4.47)

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 583–596, 2024



Some New Results in Extended Cone b-metric Space: I. Kour et al. 593

that is,

lim
n→∞dΘ(xn1+2, f (u))≤ lim

n→∞βdΘ( f n1(x0), f n1+1(x0))+γdΘ(u, f (u))+δdΘ(xn1 ,u)+ tdΘ( f (u), xn1+1).

(4.48)
We get

dΘ(u, f (u))≤ (γ+ t)dΘ(u, f (u)),

which is only possible when u = f (u).

To prove that f has a unique fixed point let v be a fixed point of f distinct from u. Then by
(4.41), we have

dΘ( f (v), f (u))≤βdΘ(v, f (v))+γdΘ(u, f (u))+δdΘ(v,u)+ tdΘ( f (u),v)

=⇒ dΘ(v,u)≤ (t+δ)dΘ(v,u) (4.49)

which is not possible. Therefore, f has a unique fixed point.

Definition 4.6. Let (X,dΘ) be an extended cone b-metric space. A mapping f :X→X is said to
be asymptotically regular if dΘ( f n1+1(x), f n1(x))→ 0 as n →∞, for each x ∈X.

Theorem 4.7. Let (X,dΘ) be a complete extended cone b-metric space such that dΘ is a
continuous functional. Let f :X→X be an asymptotically regular self mapping

dΘ( f (x), f (y))≤ s[dΘ(x, f (x))+dΘ(y, f (y))], for all x, y ∈X. (4.50)

Then f has a unique fixed point in u ∈X.

Proof. Let x ∈X and define xn1 = f n1(x). Let n1 and n2 be two fixed natural numbers such that
n2 > n1, then by the definition of asymptotic regularity, we have

dΘ( f n1+1(x), f n2+1(x))≤ s[dΘ( f n1(x), f n1+1(x))+dΘ( f n2(x), f n2+1(x))]→ 0 as n →∞. (4.51)

Therefore, { f n1(x)} is a Cauchy sequence. Since X is complete. Then, there is u ∈X such that

lim
n1→∞ f n1(x)= u. (4.52)

Next we shall show that u is a fixed point of f in the following manner:

dΘ( f (xn1), f (u))≤ s(dΘ(xn1 , f (xn1)))+dΘ(xn2 , f (xn2)), (4.53)

that is,

dΘ( f (xn1), f (u))≤ s(dΘ(xn1 , xn1+1))+dΘ(u, f (u)). (4.54)

Let n →∞ and by using asymptotically regular of f , we have

dΘ(u, f (u))≤ sdΘ(u, f (u)) (4.55)

which holds when f (u)= u. To prove that u is unique fixed point of f , let v be a fixed point of f
distinct from u. We get

dΘ(u,v)= dΘ( f (u), f (v)) (4.56)

≤ s(dΘ(u, f (v))+dΘ(v, f (v))) (4.57)

which holds when dΘ(u,v)= 0. This implies that u = v. Therefore, u is the unique fixed point of
f . Moreover, for each x ∈X, { f n1(x)} is convergent to u.
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Remark 4.8. The condition on Θ(xn1 , xn1+1, xn2) can be dropped if the map is asymptotically
regular.

Theorem 4.9. Let (X,dΘ) be a complete extended cone b-metric space such that dΘ is a
continuous functional. Consider an asymptotically regular mapping f :X→X such that dΘ is a
continuous functional such that there exists t ∈ (0,1) such that

dΘ( f (x), f (y))≤ t[dΘ(x, f (x))+dΘ(y, f (y))+dΘ(x, y)], for all x, y ∈X. (4.58)

Then f has a unique fixed point u ∈X unless

lim
n→∞

t+ tΘ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn2+1)
1− tΘ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn2+1)

(4.59)

exists for xn = f n1(x),n2 > n1 and x ∈X is arbitrary.

Proof. Let x ∈X and xn1 = f n1(x). Let n1,n2 be fixed natural numbers such that n2 > n1. Then
by (4.58), we have

dΘ( f n1+1(x), f n2+1(x)≤ t[dΘ( f n1(x), f n1+1(x))+dΘ( f n2(x), f n2+1(x))+dΘ( f n1(x), f n2(x))]

≤ t[dΘ( f n1(x), f n1+1(x))+dΘ( f n2(x), f n2+1(x))]

+Θ(xn1 , xn2 , xn1+1)[dΘ( f n1(x), f n1+1(x))+dΘ( f n1+1(x), f n2(x))]

≤ t[dΘ( f n1(x), f n1+1(x))+dΘ( f n2(x), f n2+1(x))]

+ tΘ(xn1 , xn2 , xn1+1)dΘ( f n1(x), f n1+1(x))

+ tΘ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn2+1)[dΘ( f n1+1(x), f n2+1(x))

+dΘ( f n2+1(x), f n2(x))]dΘ( f n1+1(x), f n2+1(x))

≤
(

t+ tΘ(xn1 , xn2 , xn1+1)
1− tΘ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn2+1)

)
dΘ( f n1(x), f n1+1(x))

+
(

t+ tΘ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn2+1)
1− tΘ(xn1 , xn2 , xn1+1)Θ(xn1+1, xn2 , xn2+1)

)
dΘ( f n1+1(x), f n2(x))

→ 0 as n →∞.

Therefore, { f n1(x)} is a Cauchy sequence. Since X is complete, there exists u ∈X such that

{ f n1(x)}→ u as n →∞. (4.60)

Next using triangular inequality and (4.58), we have

dΘ( fxn1
, f (u))≤ t[dΘ(xn1 , f (xn1))+dΘ(u, f (u))+dΘ(xn1 ,u)]. (4.61)

Therefore,

dΘ(xn1+1, f (u))≤ t[dΘ(xn1 , xn1+1)+dΘ(u, f (u))+dΘ(xn1 ,u)]. (4.62)

Taking limit n1 →∞, we have

lim
n1→∞(dΘ(xn1+1, f (u))≤ lim

n→∞ t[dΘ(xn1 , xn1+1)+dΘ(u, f (u))+dΘ(xn1 ,u)]). (4.63)

Therefore, dΘ(u, f (u))≤ tdΘ(u, f (u)). This implies that u = f (u). To prove that f has a unique
fixed point. Let v be a fixed point of f distinct from u. Then

dΘ( f (u), f (v))≤ t[dΘ(v, f (v))+dΘ(u, f (u))]+dΘ(u,v)], t < 1 (4.64)
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which is a contradiction. Therefore, f has a unique fixed point. Hence { f n1(x)} is convergent for
each x ∈X.

5. Conclusion
Examining specific topological properties and Kannan-type contractions in extended cone
b-metric space is the main aim of this work. The idea of asymptotic regularity has also been
applied to produce fixed point results.
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