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Abstract. For a graph G, the M-polynomial is defined as M(G; x, y)=∑
δ≤α≤β≤∆mαβ(G)xαyβ, where

mαβ(α,β ≥ 1), is the number of edges ab of G such that degG(a) = α and degG(b) = β, and δ is the
minimum degree and ∆ is the maximum degree of G. The physiochemical properties of chemical
graphs are found by topological indices, in particular, the degree-based topological indices, which
can be determined from an algebraic formula called M-polynomial. We compute the closest forms of
M-polynomial for Mycielskian of paths and cycles. Further, we plot the 3-D graphical representation of
M-polynomial. Finally, we derive some degree-based topological indices with the help of M-polynomial.
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1. Introduction
For all terms and definitions we refer to Harary [5]. Let the vertex set of a simple connected
graph G be V (G) and let E(G) be its edge set, and let n and m, respectively, denotes the
order and size of G. A chemical graph is a labeled graph where the atoms correspond to the
vertices and the chemical bonds of the compound corresponds to the edges. A numerical quantity
which is used to analyse both the physical and chemical properties of compounds is termed
as a topological index. A topological index is also called a graph invariant. In general, the
physiochemical properties and boiling activities of a chemical graph are investigated using
topological indices.

H. Weiner [13] initiated the study of topological indices in the year 1947. The concept of
Weiner index was first introduced by Weiner [13] mainly to know the correspondence of the
attributes of molecules in a compound along with structural property. Hosoya [6] explained
the Weiner index using the concept of distance between vertices in a graph in the year 1972.
For more work done on topological indices, we refer the reader to Brückler et al. [1], Das et
al. [2], and Fath-Tabar et al. [4].

There are many algebraic polynomials available in the literature. One such a polynomial
is Hosoya polynomial, which is used to determine the distance-based topological indices.
An important class of algebraic polynomial introduced by Deutsch and Klavžar [3] called
M-polynomial is used to determine the closest form of various topological indices based on
degree. For more work done on finding topological indices using M-polynomial, we refer the
reader to Khalaf et al. [7], Kwun et al. [8], Munir et al. [10,11], and Swamy et al. [12].

The notion of Mycielskian graph of a given graph G by Lin et al. [9] is defined as follows:

Definition 1.1. For a graph G, the Mycielskian of G, denoted by µ(G), is the graph with
V (µ(G))= X ∪Y ∪ {b} such that xix j ∈ E(µ(G)) ⇐⇒ xix j ∈ E(G), with xi yj ∈ E(µ(G)) ⇐⇒ xix j ∈
E(G), with yib ∈ E(µ(G)), i ∈ [1,n]; and no more edges in E(µ(G)), where xi ∈V (G) and yi ∈Y .

Figure 1(a) and Figure 1(b) shows an example of Mycielskian of a path P7 and a cycle C5,
respectively.

(a) µ(P7) (b) µ(C5)

Figure 1

Inspired by the studies as mentioned above, we aim to calculate the M-polynomial and
degree-based topological indices of µ(P7) and µ(C5).
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2. Methodology
We procedure that we follow is as follows:
Step 1: Initially, E(µ(P7)) and E(µ(C5)) are divided into separate classes depends on the end

vertices degree.

Step 2: With the help of this edge division (Step 1), we compute the M-polynomial of Mycielskian
of paths and cycles.

Step 3: The degree-based topological indices as listed in Section 3 are computed using
M-polynomial.

Step 4: Using MATLAB, the 3-D graph corresponding to M-polynomials are plotted.

3. Preliminaries
Definition 3.1. The M-polynomial of a graph G is defined as M(G; x, y)=∑

δ≤α≤β≤∆mαβ(G)xαyβ,
where mαβ(α,β≥ 1), is the number of edges ab of G such that degG(a)=α and degG(b)=β, and
δ is the minimum degree and ∆ is the maximum degree of G.

Using M-polynomial, degree-based topological indices are derived with the help of operations
as mentioned in following table. Let M(G; x, y)= f (x, y). Then using M-polynomial, degree-based
topological indices are derived with the help of operations as mentioned below.

Notation Topological Index Derivation from M(G; x, y)

M1(G) First Zagreb index (Dx +D y)( f (x, y))|x=1;y=1

M2(G) Second Zagreb index (DxD y)( f (x, y))|x=1;y=1
mM2(G) Second modified Zagreb index (SxSy)( f (x, y)))|x=1;y=1

SSD(G) Symmetric division index (DxSy +D ySx)( f (x, y))|x=1;y=1

H(G) Harmonic index 2SxJ( f (x, y))|x=1

I(G) Inverse sum index SxJDxD y( f (x, y)))|x=1

Here, Dx( f (x, y)) = x
(
∂ f (x,y)
∂x

)
, D y( f (x, y)) = y

(
∂ f (x,y)
∂y

)
, Sx( f (x, y)) = ∫ x

0

(
f (t,y)

t

)
dt, Sy( f (x, y)) =∫ y

0

(
f (x,t)

t

)
dt, and J[ f (x, y)]= f (x, x) are the operators.

4. M-polynomial of Mycielskian of Paths
In this section, we find the M-polynomial of Mycielskian of paths.

Theorem 4.1. Let Pn be a path of order n ≥ 2. Then M(µ(G)) is

M(µ(G); x, y)= 2x2 y3 +4x2 y4 +2x2 yn +2(n−3)x3 y4 + (n−2)x3 yn + (n−3)x4 y4 .

Proof. Let G = Pn be a path of order n, n ≥ 2. It is easy to observe from Figure 1(a) that

|V (µ(G))| = 2n+1 and |E(µ(G))| = 4n−3 .

Since each vertex of G is of degree either 2 or 3 or 4 or n, the partitions of V (µ(G)) be:

V1(µ(G)) := {v ∈V (µ(G)) : degµ(G)(v)= 2},
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V2(µ(G)) := {v ∈V (µ(G)) : degµ(G)(v)= 3},

V3(µ(G)) := {v ∈V (µ(G)) : degµ(G)(v)= 4},

V4(µ(G)) := {v ∈V (µ(G)) : degµ(G)(v)= n}.

Clearly,

|V1(µ(G))| = 4, |V2(µ(G))| = n−2, |V3(µ(G))| = n−2, |V4(µ(G))| = 1 .

Furthermore, the partitions of edge set E(µ(G)) are:

E1(µ(G)) := {e = ab ∈ E(µ(G)) : degµ(G)(a)= 2,degµ(G)(b)= 3},

E2(µ(G)) := {e = ab ∈ E(µ(G)) : degµ(G)(a)= 2,degµ(G)(b)= 4},

E3(µ(G)) := {e = ab ∈ E(µ(G)) : degµ(G)(a)= 2,degµ(G)(b)= n},

E4(µ(G)) := {e = ab ∈ E(µ(G)) : degµ(G)(a)= 3,degµ(G)(b)= 4},

E5(µ(G)) := {e = ab ∈ E(µ(G)) : degµ(G)(a)= 3,degµ(G)(b)= n},

E6(µ(G)) := {e = ab ∈ E(µ(G)) : degµ(G)(a)= 4,degµ(G)(b)= 4}.

Clearly,

|E1(µ(G))| = 2, |E2(µ(G))| = 4, |E3(µ(G))| = 2, |E4(µ(G))| = 2(n−3),

|E5(µ(G))| = n−2, |E6(µ(G))| = n−3 .

Therefore,

M(G; x, y)= ∑
δ≤α≤β≤∆

mαβ(µ(G))xαyβ

= m23(µ(G))x2 y3 +m24(µ(G))x2 y4 +m2n(µ(G))x2 yn +m34(µ(G))x3 y4

+m3n(µ(G))x3 yn +m44(µ(G))x4 y4

= 2x2 y3 +4x2 y4 +2x2 yn +2(n−3)x3 y4 + (n−2)x3 yn + (n−3)x4 y4 .

For Mycielskian of paths, degree-based topological indices are computed using this
M-polynomial in the next theorem.

Theorem 4.2. Let G = Pn be a path of order n ≥ 2. Then,

M1(µ(G))= n2 +25n−34 ,

M2(µ(G))= 3n2 +38n−76 ,

mM2(µ(G))= 11n2 +23n+16
48n

,

SSD(µ(G))= 2n3 +39n2 −7n−12
6n

,

H(µ(G))= 345n3 +2426n2 +3055n+846
420n2 +2100n+2520

,

I(µ(G))= 885n3 +2372n2 −1070n−5388
105n2 +525n+630

.

Proof. From Theorem 4.1, we have

M(µ(G); x, y)= 2x2 y3 +4x2 y4 +2x2 yn +2(n−3)x3 y4 + (n−2)x3 yn + (n−3)x4 y4 .
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Then, we have

Dx( f (x, y))= 3(n−2)x3 yn +4x2 yn +4(n−3)x4 y4 +6(n−3)x3 y4 +8x2 y4 +4x2 y3 ,

D y( f (x, y))= n(n−2)x3 yn +2nx2 yn +4(n−3)x4 y4 +8(n−3)x3 y4 +16x2 y4 +6x2 y3 ,

(D yDx)( f (x, y))= 3n(n−2)x3 yn +4nx2 yn +16(n−3)x4 y4 +24(n−3)x3 y4 +32x2 y4 +12x2 y3 ,

Sx( f (x, y))= ((4n−8)x3 +12x2)yn + ((3n−9)x4 + (8n−24)x3 +24x2)y4 +12x2 y3

12
,

Sy( f (x, y))= ((12n−24)x3+24x2)yn+((3n2−9n)x4+(6n2−18n)x3+12nx2)y4+8nx2 y3

12n
,

SxSy( f (x, y))= ((16n−32)x3+48x2)yn+((3n2−9n)x4+(8n2−24n)x3+24nx2)y4+16nx2 y3

48n
,

SyDx( f (x, y))= x(((18n−36)x2+24x)yn+((6n2−18n)x3+(9n2−27n)x2+12nx)y4+8nxy3)
6n

,

SxD y( f (x, y))= ((n2 −2n)x3 +3nx2)yn + ((3n−9)x4 + (8n−24)x3 +24x2)y4 +9x2 y3

3
,

2SxJ( f (x, y))= 2(105n3 +210n2 −945n−1890)x8 +2(240n3 +480n2 −2160n−4320)x7

840n2 +4200n+5040

+ 2(560n2 +2800n+3360)x6 +2(336n2 +1680n+2016)x5

840n2 +4200n+5040

+ 2xn+3(840n2 −3360)+2xn+2(1680n+5040)
840n2 +4200n+5040

,

SxJDxD y( f (x, y))= (210n3 +420n2 −1890n−3780)x8 + (360n3 +720n2 −3240n−6480)x7

105n2 +525n+630

+ (560n2 +2800n+3360)x6 + (252n2 +1260n+1512)x5

105n2 +525n+630

+ xn+3(315n3 −1260n)+ xn+2(420n2 +1260n)
105n2 +525n+630

.

Now, we have the following:

(i) M1(µ(G))= (Dx( f (x, y)+D y( f (x, y))|x=1;y=1 = n2 +25n−34,

(ii) M2(µ(G))= (Dx( f (x, y))(D y( f (x, y))|x=1;y=1 = 3n2 +38n−76,

(iii) mM2(µ(G))= (Sx( f (x, y))(Sy( f (x, y))|x=1;y=1 = 11n2 +23n+16
48n

,

(iv) SSD(µ(G))= (DxSy( f (x, y))+D ySx( f (x, y)))|x=1;y=1 = 2n3 +39n2 −7n−12
6n

,

(v) H(µ(G))= 2SxJ( f (x, y))|x=1 = 345n3 +2426n2 +3055n+846
420n2 +2100n+2520

,

(vi) I(µ(G))= SxJDxD y( f (x, y))|x=1 = 885n3 +2372n2 −1070n−5388
105n2 +525n+630

.
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Figure 2. Plot of M-polynomial of Mycielskian of a path P8

5. M-polynomial of Mycielskian of Cycles
We now find the M-polynomial of Mycielskian of cycles.

Theorem 5.1. Let Cn be a cycle of order n ≥ 3. Then m(µ(G)) is

M(µ(G); x, y)= 2nx3 y4 +nx3 yn +nx4 y4 .

Proof. Let G = Cn be a cycle of order n, n ≥ 3. From Figure 1(b) it is easy to observe that

|V (µ(G))| = 2n+1 and |E(µ(G))| = 4n .

Since each vertex of G is of degree either 2 or 4 or n, the partitions of V (µ(G)) be:

V1(µ(G))= {a ∈V (µ(G)) : degµ(G)(a)= 3},

V2(µ(G))= {a ∈V (µ(G)) : degµ(G)(a)= 4},

V3(µ(G))= {a ∈V (µ(G)) : degµ(G)(a)= n}.

Clearly,

|V1(µ(G))| = n, |V2(µ(G))| = n, |V3(µ(G))| = 1 .

Furthermore, the partitions of edge set E(µ(G)) are:

E1(µ(G))= {e = ab ∈ E(µ(G)) : degµ(G)(a)= 3,degµ(G)(b)= 4},

E2(µ(G))= {e = ab ∈ E(µ(G)) : degµ(G)(a)= 3,degµ(G)(b)= n},

E3(µ(G))= {e = ab ∈ E(µ(G)) : degµ(G)(a)= 4,degµ(G)(b)= 4}.

Clearly,

|E1(µ(G))| = 2n, |E2(µ(G))| = n, |E3(µ(G))| = n .

Therefore,

M(G; x, y)= ∑
δ≤α≤β≤∆

mαβ(µ(G))xαyβ

= m34(µ(G))x3 y4 +m3n(µ(G))x3 yn +m44(µ(G))x4 y4

= 2nx3 y4 +nx3 yn +nx4 y4 .
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Theorem 5.2. Let Cn be a cycle of order n ≥ 3. Then,

M1(µ(G))= n2 +25n ,

M2(µ(G))= 3n2 +40n ,

mM2(µ(G))= 11n+16
48

,

SSD(µ(G))= 2n2 +37n+18
6

,

H(µ(G))= 23n2 +125n
28n+84

,

I(µ(G))= 59n2 +114n
7n+21

.

Proof. From Theorem 5.1, we have

M(µ(G); x, y)= 2nx3 y4 +nx3 yn +nx4 y4 .

Then,

Dx( f (x, y))= 3nx3 yn +4nx4 y4 +6nx3 y4 ,

D y(( f (x, y))= n2x3 yn +4nx4 y4 +8nx3 y4 ,

(D yDx)( f (x, y))= 3n2x3 yn +16nx4 y4 +24nx3 y4 ,

Sx( f (x, y))= 4nx3 yn + (3nx4 +8nx3)y4

12
,

Sy( f (x, y))= 4x3 yn + (nx4 +2nx3)y4

4
,

SxSy( f (x, y))= 16x3 yn + (3nx4 +8nx3)y4

48
,

SyDx( f (x, y))= 6x3 yn + (2nx4 +3nx3)y4

2
,

SxD y( f (x, y))= n2x3 yn + (3nx4 +8nx3)y4

3
,

2SxJ( f (x, y))= (56nxn+3 + (7n2 +21n)x8 + (16n2 +48n)x7

28n+84
,

SxJDxD y( f (x, y))= 21n2xn+3 + (14n2 +42n)x8 + (24n2 +72n)x7

7n+21
.

Now, we have the following:

(i) M1(µ(G))= (Dx( f (x, y)+D y( f (x, y))|x=1;y=1 = n2 +25n,

(ii) M2(µ(G))= (Dx( f (x, y))(D y( f (x, y))|x=1;y=1 = 3n2 +40n,

(iii) mM2(µ(G))= (Sx( f (x, y))(Sy( f (x, y))|x=1;y=1 = 11n+16
48

,

(iv) SSD(µ(G))= (DxSy( f (x, y))+D ySx( f (x, y)))|x=1;y=1 = 2n2 +37n+18
6

,

(v) H(µ(G))= 2SxJ( f (x, y))|x=1 = 23n2 +125n
28n+84

,
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(vi) I(µ(G))= SxJDxD y( f (x, y))|x=1 = 59n2 +114n
7n+21

.

Figure 3. Plot of M-polynomial of Mycielskian of a cycle C8

6. Conclusion
We have discussed the closest forms of M-polynomial for Mycielskian of paths and cycles.
The graphical representation of M-polynomial is given and derived some degree-based
topological indices from M-polynomial. The M-polynomial can be determined for many graph
classes, derived graphs, graph products, graph operations, and graph powers.
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