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1. Introduction
As defined in [3], [4], [5], [6], [7], the degenerate exponential function is given as

f (t)= (1+λt)
1
λ , (1.1)

for λ ∈ (0,∞) and t ∈R.
This should not be confused with the degenerate exponential function defined by Nantomah

[9] as

g(t)= (1+λ)
t
λ , (1.2)

for λ ∈ (0,∞) and t ∈R.
It is clear that taking the limit of f (t) as λ→ 0, then f (t)→ et. Its range is the set of positive

real numbers.
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The first derivative of the function (1.1) is given as

f ′(t)= (1+λt)
1
λ−1 > 0, (1.3)

for all t ∈ (−∞,∞). This implies that the degenerate exponential function (1.1) is increasing on
t ∈ (−∞,∞).

Plot of the degenerate exponential function (1.1) for some values of λ, is shown in Figure 1.
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Figure 1. Plot of f (t)

Later on, motivated by the degenerate exponential function, a good number of researchers
have introduced degenerate versions of many special functions.

Kim and Kim [4] introduced the degenerate gamma function, the degenerate hyperbolic
functions and the degenerate Laplace transform and studied some of their properties. Kim et
al. [6] introduced the modified degenerate gamma function. Nantomah [8] established several
properties satisfied by the modified degenerate gamma function. Recently, Nantomah [9]
introduced the degenerate exponential integral function and established some of its properties.
Also, Akel et al. [1] introduced the degenerate gamma matrix function, the degenerate zeta
matrix function, the degenerate diagamma matrix function, the degenerate polygamma matrix
function and the degenerate Gauss hypergeometric matrix function. The critical role played by
the degenerate exponential function in the introduction and the study of properties of the above
mentioned functions makes its properties worth studying.

In this paper, we establish some monotonic and limit properties as well as inequlities
involving the degenerate exponential function.

2. Results
Proposition 2.1. The limit of the n-th derivative of the degenerate exponential function as λ→ 0
is given as

lim
λ→0

[
(1+λt)

1
λ−n

n−1∏
k=0

(1−λk)

]
= et, (2.1)

for λ ∈ (0,∞), n ∈N and t ∈ (−∞,∞).
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Proof. Differentiating (1.1), we have

f ′(t)= (1+λt)
1
λ−1,

f ′′(t)= (1−λ)(1+λt)
1
λ−2,

f ′′′(t)= (1−2λ)(1−λ)(1+λt)
1
λ−3,

f (4)(t)= (1−3λ)(1−2λ)(1−λ)(1+λt)
1
λ−4.

Continuing the process n number of times, gives

f (n)(t)= (1+λt)
1
λ−n

n−1∏
k=0

(1−λk).

Also, let

y= lim
λ→0

[
(1+λt)

1
λ−n

n−1∏
k=0

(1−λk)

]
. (2.2)

Taking the natural logarithm on both sides of (2.2), we have

ln y= lim
λ→0

ln

[
(1+λt)

1
λ−n

n−1∏
k=0

(1−λk)

]

= lim
λ→0

(
1
λ
−n

)
ln(1+λt)+ lim

λ→0
ln

n−1∏
k=0

(1−λk)

= lim
λ→0

(1−λn) ln(1+λt)
λ

+
n−1∑
k=0

lim
λ→0

ln(1−λk)

= lim
λ→0

(1−λn) ln(1+λt)
λ

+
n−1∑
k=0

ln(1)

= lim
λ→0

[
−n ln(1+λt)+ (1−λn)t

1+λt

]
= lim
λ→0

−n ln(1+λt)+ lim
λ→0

+ t−λnt
1+λt

= t.

Therefore,

y=et.

This concludes the proof.

Lemma 2.1. The inequality

(1+λt)
1
λ − ln[1+ (1+λt)

1
λ ]> 1− ln2, (2.3)

holds for all t,λ ∈ (0,∞).

Proof. Let h(t)= (1+λt)
1
λ − ln[1+ (1+λt)

1
λ ]. Thus,

h′(t)= (1+λt)
1
λ−1 − (1+λt)

1
λ−1

1+ (1+λt)
1
λ
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= (1+λt)
1
λ−1

[
1− 1

1+ (1+λt)
1
λ

]

= (1+λt)
2
λ−1

1+ (1+λt)
1
λ

> 0.

This shows that h(t) is increasing on (0,∞). Therefore, we have

h(t)> lim
t→0

h(t)= 1− ln2,

yielding the results (2.3).

Theorem 2.1. The inequality

(1+λt)−
1
λ ≥ 1− t (2.4)

is valid for all t ∈ [0,∞) and λ ∈ (0,∞). Equality holds when t = 0.

Proof. Let f (t)= (1+λt)−
1
λ + t−1. Thus,

f ′(t)=−(1+λt)−
1
λ−1 +1

=− 1

(1+λt)
1
λ+1

+1

≥ 0 .

This shows that f (t) is increasing. Thus,

f (t)> lim
t→0

f (t)= 0,

yielding the results (2.4).

Theorem 2.2. For all t,λ ∈ (0,∞), the function

h(t)= [1+ (1+λt)
1
λ ]1+(1+λt)−

1
λ

is increasing. Consequently, the inequality

2ln2< (1+λt)
1
λ

1+ (1+λt)
1
λ

< ln[1+ (1+λt)
1
λ ], (2.5)

is satisfied.

Proof. Let

ω(t)= lnh(t)= [1+ (1+λt)
1
λ ]

(1+λt)
1
λ

ln[1+ (1+λt)
1
λ ],

for all t,λ ∈ (0,∞). Then, we have

ω′(t)= {(1+λt)
2
λ−1 − [1+ (1+λt)

1
λ ](1+λt)

1
λ−1} ln[1+ (1+λt)

1
λ ]

(1+λt)
2
λ

+ [1+ (1+λt)
1
λ ](1+λt)

1
λ−1

(1+λt)
1
λ [1+ (1+λt)

1
λ ]

= {(1+λt)
2
λ−1 − (1+λt)

1
λ−1 − (1+λt)

2
λ−1} ln[1+ (1+λt)

1
λ ]

(1+λt)
2
λ

+ 1
(1+λt)
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= 1
(1+λt)

− (1+λt)
1
λ−1 ln[1+ (1+λt)

1
λ ]

(1+λt)
2
λ

= 1
(1+λt)

− ln[1+ (1+λt)
1
λ ]

(1+λt)
1
λ+1

= 1

(1+λt)
1
λ+1

{(1+λt)
1
λ − ln[1+ (1+λt)

1
λ ]}

> 0,

which follows from Lemma 2.1. This implies ω(t) is increasing and consequently, h(t) is also
increasing. Thus, we have

lim
t→0

ω(t)= lim
t→0

[1+ (1+λt)
1
λ ] ln[1+ (1+λt)

1
λ ]

(1+λt)
1
λ

= 2ln2 ;

lim
t→∞ω(t)= lim

t→∞
[1+ (1+λt)

1
λ ] ln[1+ (1+λt)

1
λ ]

(1+λt)
1
λ

= lim
t→∞

(1+λt)
1
λ−1 ln[1+ (1+λt)

1
λ ]+ (1+λt)

1
λ
−1

1+(1+λt)
1
λ

[1+ (1+λt)
1
λ ]

(1+λt)
1
λ−1

= lim
t→∞


(1+λt)

1
λ−1 ln[1+ (1+λt)

1
λ ]

(1+λt)
1
λ−1

+
(1+λt)

1
λ
−1[1+(1+λt)

1
λ ]

1+(1+λt)
1
λ

(1+λt)
1
λ−1


= lim

t→∞{ln[1+ (1+λt)
1
λ ]+1}

=∞.

For all t,λ ∈ (0,∞) , since ω(t) is increasing, then we have

2ln2= lim
t→0

ω(t)<ω(t)< lim
t→∞ω(t)=∞.

This completes the proof.

Theorem 2.3. For t,λ ∈ (0,∞), the inequality

ln2− 1
2
< (1+λt)

1
λ

1+ (1+λt)
1
λ

< ln[1+ (1+λt)
1
λ ], (2.6)

holds.

Proof. Let

Φ(t)= ln[1+ (1+λt)
1
λ ]− (1+λt)

1
λ

1+ (1+λt)
1
λ

. (2.7)

Then,

Φ′(t)= (1+λt)
1
λ−1

1+ (1+λt)
1
λ

− (1+λt)
1
λ−1

[1+ (1+λt)
1
λ ]2
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= (1+λt)
1
λ−1

1+ (1+λt)
1
λ

[
1− 1

1+ (1+λt)
1
λ

]

= (1+λt)
2
λ−1

[1+ (1+λt)
1
λ ]2

> 0.

This implies that Φ(t) is increasing on (0,∞). Furthermore,

lim
t→0
Φ(t)= lim

t→0

{
ln[1+ (1+λt)

1
λ ]− (1+λt)

1
λ

1+ (1+λt)
1
λ

}
= ln2− 1

2
;

lim
t→∞Φ(t)= lim

t→∞

{
ln[1+ (1+λt)

1
λ ]− (1+λt)

1
λ

1+ (1+λt)
1
λ

}

= lim
t→∞

ln[1+ (1+λt)
1
λ ]− 1

1

(1+λt)
1
λ

+1


=∞.

Thus, for t,λ ∈ (0,∞), we have

ln2− 1
2
= lim

t→0
Φ(t)<Φ(t)< lim

t→∞Φ(t)=∞,

which gives the desired inequality (2.6). This concludes the proof.

Theorem 2.4. The function

g(t)= [1+ (1+λt)
1
λ ](1+λt)−

1
λ

is decreasing. As a results, the inequality

ln[1+ (1+λt)
1
λ ]< ln2(1+λt)

1
λ , (2.8)

is valid for all t,λ ∈ (0,∞).

Proof. Let µ(t)= ln g(t)= ln[1+(1+λt)
1
λ ]

(1+λt)
1
λ

, for all t,λ ∈ (0,∞). Then, we have

µ′(t)=
(1+λt)

1
λ
−1

1+(1+λt)
1
λ

(1+λt)
1
λ − (1+λt)

1
λ−1 ln[1+ (1+λt)

1
λ ]

(1+λt)
2
λ

=
(1+λt)

2
λ
−1

1+(1+λt)
1
λ

− (1+λt)
1
λ−1 ln[1+ (1+λt)

1
λ ]

(1+λt)
2
λ

= 1

(1+λt)+ (1+λt)
1
λ+1

− ln[1+ (1+λt)
1
λ ]

(1+λt)
1
λ+1

= 1

(1+λt)
1
λ+1

{
(1+λt)

1
λ

1+ (1+λt)
1
λ

− ln[1+ (1+λt)
1
λ ]

}
< 0,
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which follows from (2.7). Hence µ(t) is decreasing and consequently, g(t) is also decreasing.
In addition,

lim
t→0

µ(t)= lim
t→0

ln[1+ (1+λt)
1
λ ]

(1+λt)
1
λ

= ln2 ;

lim
t→∞µ(t)= lim

t→∞
ln[1+ (1+λt)

1
λ ]

(1+λt)
1
λ

= lim
t→∞

(1+λt)
1
λ
−1

1+(1+λt)
1
λ

(1+λt)
1
λ−1

= lim
t→∞

1

1+ (1+λt)
1
λ

= 0.

Since µ(t) is decreasing, we have the following. For all t,λ ∈ (0,∞) , we have

0= lim
t→∞µ(t)<µ(t)< lim

t→0
µ(t)= ln2,

which yields the desired result (2.8).

3. Conclusion
We have established some limit and monotonic properties involving the degenerate exponential
function. Inequalities involving the degenerate exponential function have also been obtained.
Many fields in mathematics will benefit from these established properties.
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