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1. Introduction
It is well-known that the first digits of many numerical data sets are not uniformly distributed.
Newcomb [1], and Benford [2] observed that the first digits of many series of real numbers obey
Benford’s law

PB(d)= log10(1+d)− log10(d), d = 1,2, . . . ,9 . (1.1)

The increasing knowledge about Benford’s law and its applications has been collected in various
bibliographies, the most recent being Beebe [3], and Berger and Hill [4]. It is also known that for
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any fixed power exponent s ≥ 1, the first digits of some integer sequences, like integer powers
and square-free integer powers, follow asymptotically a Generalized Benford law (GBL) with
exponent α= s−1 ∈ (0,1) (see Hürlimann [5], [6]) such that

PGB
α (d)= (1+d)α−dα

10α−1
, d = 1,2, . . . ,9. (1.2)

Clearly, the limiting case α→ 0 respectively α→ 1 of (1.2) converges weakly to Benford’s law
respectively the uniform distribution.

We study the first digits of powers from perfect power numbers along the line of [6]. The
method consists to fit the GBL to appropriate samples of first digits using two goodness-of-
fit measures, namely the MAD measure (mean absolute deviation) and the WLS measure
(probability weighted least square or chi-square divided by sample size). In Section 2, we
determine the minimum MAD and WLS estimators of the GBL over finite ranges of powers up
to 10s·m , m ≥ 10, s ≥ 1 a fixed power exponent. Calculations illustrate the convergence of the
size-dependent GBL with minimum MAD and WLS estimators to the GBL with exponent (2s)−1 .
Moreover, we show the existence of a one-parameter size-dependent function that converges to
the parameter of these GBL’s and determine an optimal value that minimizes its deviation to
the minimum MAD and WLS estimators. A mathematical proof of the asymptotic convergence
of the finite sequences to the GBL with exponent (2s)−1 follows in Section 3.

2. Size-Dependent Generalized Benford Law for
Powers of Perfect Powers

A perfect power number is a positive integer that can be expressed as an integer power of another
positive integer. It is of the form n = mk for some natural numbers m > 1, k > 1. The number
1= 1k , for any k > 1, is also counted as perfect number (sequence A001597 in Sloane’s OEIS,
URL: https://oeis.org/). To investigate the optimal fitting of the GBL to first digit sequences
of powers from perfect powers, it is necessary to specify goodness-of-fit (GoF) measures according
to which optimality should hold. For this purpose, we use here the following two GoF measures.
Let {xn}⊂ [1,∞), n ≥ 1, be an integer sequence, and let dn be the (first) significant digit of xn .
The number of xn ’s, n = 1, . . . , N , with significant digit dn = d is denoted by XN(d). The MAD
measure or mean absolute deviation measure for the GBL is defined to be

MADN(α)= 1
9
·

9∑
d=1

∣∣∣∣PGB
α (d)− XN(d)

N

∣∣∣∣ . (2.1)

This measure has been used to assess conformity to Benford’s law by Nigrini [7] (see also
Nigrini [8, Table 7.1, p. 160]). The WLS measure for the GBL is defined by

WLSN(α)=
9∑

d=1

(
PGB
α (d)− XN (d)

N

)2

PGB
α (d)

. (2.2)

In the context of first digit distributions, this chi-square divided by sample size has been used
by Leemis et al. [9] (see also [6], [10]). Consider now the sequence of integer powers {ns

pp},
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ns
pp < 10s·m , for a fixed exponent s = 1,2,3, . . ., and arbitrary perfect power numbers npp below

10m , m ≥ 10. Denote by Is
k(d) the number of powers from perfect power numbers below 10k ,

k ≥ 1, with first digit d . This number is defined recursively by the relationship

Is
k+1(d)= S

(
s
√

(d+1) ·10k
)
−S

(
s
√

d ·10k
)
+ Is

k(d), k = 1,2, . . . , (2.3)

with S(x) the counting function given by (see Nyblom [11, Theorem 3.1])

S(x)= bxc− ∑
d|Px

µ(d) ·⌊ dpx
⌋

. (2.4)

In (2.4) the sum is taken over all divisors of Px = ∏
p≤blog2 xc

p (p a prime number), µ(k) is the

Möbius function such that µ(k) = 0 if the prime square p2 divides k and µ(k) = (−1)e if k is
a square-free number with e distinct prime factors, and b·c denotes the integer-part function.
Alternatively, one has (see Nyblom [12, equation (1)])

S(x)=
m∑

k=1
(−1)k+1 ∑

1≤i1<...<ik≤m

⌊ pi1 ...pikpx
⌋

, (2.5)

where the sum is taken over all ordered k-element subsets {i1, . . . , ik} of the set {1,2, . . . ,m}, and
p1, p2, . . . , pm are the prime numbers less than or equal to

⌊
log2 x

⌋
. Another more recent exact

recursion formula is (see Jakimczuk [13, Theorem 2.2])

S(x+1)= S(x)+1−
x+1∑
j=2

(
1−

⌊⌊ jpx+1
⌋

jpx+1

⌋)
, S(1)= 1. (2.6)

However, simple efficient algorithms to compute these arithmetic functions do not seem to be
known so far. At the cost of some loss in accuracy, one can overcome computational difficulties
by using appropriate approximation formulas for S(x). Since we are mostly interested in the
asymptotic behaviour of the first digits, we replace the exact value of the counting function by
an asymptotic formula Sas(x). For simplicity we use the formula of Jakimczuk [14] defined by

Sas(x)=p
x+ 3px+ 5px− 6px , (2.7)

which implies that
p

x+ 3px < S(x)<p
x+ 3px+ 5px for all sufficiently large x.

In general, with N = S(10m) one has XN(d) = Is
s·m(d) in (2.1)-(2.2). Based on (2.7) a list

of approximate values for Is
5m·s(d), m = 2, . . . ,6, s = 1,2,3,4,5, together with approximate

sample sizes N = Sas(105m), is provided in Table A.1 of the Appendix. Based on this, we have
determined the so-called minimum MAD and minimum WLS estimators of the GBL. Together
with their GoF measures, these optimal estimators are reported in Table 1 below. Note that the
minimum WLS is a critical point of the equation

∂

∂α
WLSN(α)=

9∑
d=1

∂PGB
α (d)
∂α

·
PGB
α (d)2 −

(
XN (d)

N

)2

PGB
α (d)2

= 0,
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Table 1. GBL fit for first digits of powers from perfect powers: MAD vs WLS criterion

s = 1 Parameters ∆ to LL estimate MAD GoF measures WLS GOF measure
m = WLS MAD WLS MAD LL WLS MAD LL WLS MAD

2 0.49630632 0.49627797 0.131 0.128 8232.7 1515.9 1480 7122.9 250.04 253.28
3 0.49945998 0.49945671 0.040 0.044 266.15 162.32 161.4 89.403 24.946 25.677
4 0.49992119 0.49992070 0.288 0.293 173.54 23.411 23.31 339.23 5.2022 5.2978
5 0.49998845 0.49998838 0.655 0.662 39.643 3.4253 3.409 173.56 1.1135 1.1352
6 0.49999831 0.49999830 1.194 1.204 7.2438 0.50235 0.5002 57.600 0.23950 0.24335

s = 2 Parameters ∆ to LL estimate MAD GoF measures WLS GOF measure
m = WLS MAD WLS MAD LL WLS MAD LL WLS MAD

2 0.24822460 0.24823214 0.072 0.073 4706.8 1115.9 1100 24272 2177.9 21803
3 0.24973362 0.24973013 0.016 0.020 107.73 40.429 38.46 127.92 15.100 20.232
4 0.24996110 0.24996059 0.139 0.144 87.199 5.8216 5.773 816.00 3.2209 4.3031
5 0.24999430 0.24999425 0.320 0.325 19.983 0.85191 0.848 431.29 0.69086 0.79669
6 0.24999916 0.24999916 0.586 0.595 3.6553 0.12497 0.1242 144.68 0.14860 0.17876

s = 3 Parameters ∆ to LL estimate MAD GoF measures WLS GOF measure
m = WLS MAD WLS MAD LL WLS MAD LL WLS MAD

2 0.16542250 0.16534139 0.042 0.034 3236.3 2282.8 2133 164899 89214 92003
3 0.16648931 0.16648716 0.011 0.013 70.793 22.471 20.9 545.45 58.088 77.623
4 0.16664079 0.16664057 0.092 0.094 58.350 2.5917 2.51 3602.6 6.4122 8.5418
5 0.16666288 0.16666287 0.212 0.123 13.422 0.37850 0.376 1914.8 1.3598 1.3760
6 0.16666611 0.16666611 0.390 0.393 2.45986 0.05552 0.0544 643.54 0.29242 0.32967

s = 4 Parameters ∆ to LL estimate MAD GoF measures WLS GOF measure
m = WLS MAD WLS MAD LL WLS MAD LL WLS MAD

2 0.12416155 0.12419543 0.041 0.045 3557.5 2443.9 2352 1641403 921650 926528
3 0.12486723 0.12486632 0.008 0.009 52.043 12.007 10.1 2762.6 196.79 232.09
4 0.12498061 0.1298050 0.069 0.070 43.823 1.4391 1.38 20210 19.995 25.038
5 0.12499716 0.12499714 0.159 0.161 10.096 0.21270 0.203 10767 4.2918 5.8817
6 0.12499958 0.12499958 0.292 0.294 1.8503 0.03119 0.0299 3620.8 0.92328 1.1744

s = 5 Parameters ∆ to LL estimate MAD GoF measures WLS GOF measure
m = WLS MAD WLS MAD LL WLS MAD LL WLS MAD

2 0.09907068 0.09910273 0.007 0.010 2743.7 2527.2 2429 10763907 10551418 10595115
3 0.09989330 0.09989271 0.007 0.007 41.837 10.789 10.1 20491 1415.4 1566.1
4 0.09998449 0.09993444 0.055 0.056 0.056 35.083 0.92565 129296 80.820 92603
5 0.09999773 0.09999772 0.127 0.128 8.0887 0.13604 0.129 68899 17.549 23.318
6 0.09999967 0.09999966 0.233 0.235 1.4828 0.01996 0.0188 23176 3.7765 5.3048

with

∂PGB
α (d)
∂α

= (1+d)α
{
ln

(1+d
10

)
10α− ln(1+d)

}−dα
{
ln

( d
10

)
10α− ln(d)

}
(10α−1)2 , d = 1,2, . . . ,9. (2.8)

For comparison, the MAD and WLS measures for the following size-dependent GBL exponent

αLL(5m · s)= (2s)−1 · {1− c ·10−m}, (2.9)

with c = 1, called LL estimator, are listed. This type of estimator is named in honour of Luque
and Lacasa [15] who introduced it in their GBL analysis for the prime number sequence.
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Through calculation one observes that the LL estimator minimizes the absolute deviations
between the LL estimator and the MAD (resp. WLS) estimators over the finite ranges of powers
[1,105m·s], m = 2, . . . ,6, s = 1,2,3,4,5. In fact, if one denotes the MAD and WLS estimators of
the sequence {ns

pp}, ns
pp < 105m·s , by αMAD(5m · s) and αWLS(5m · s), then one has uniformly

over the considered finite ranges (columns “∆ to LL estimate” in Table 1 in units of 10−m)

|αWLS(5m · s)−αLL(5m · s)| ≤ 1.195 ·10−m,

|αMAD(5m · s)−αLL(5m · s)| ≤ 1.205 ·10−m. (2.10)

Table 1 below displays our results. The MAD (respectively WLS) measures are given in units of
10−8 (respectively 10−(7+m+s)). The optimal MAD and WLS measures decrease with increasing
sample size as should be.

3. Asymptotic Counting Function for Powers of Perfect Powers
The following mimics [6], Section 3, through extension of Luque and Lacasa [15, Section 5(a)]. It
is well-known that a random process with uniform density x−1 generates data that are Benford
distributed. Similarly, a sequence of numbers generated by a power-law density x−α, α ∈ (0,1),
has a GBL first-digit distribution PGB

1−α(d) with exponent 1−α (e.g. Pietronoro et al. [16, equation
(3)]). From such a density it is possible to derive a counting function C(N) that yields the number
of elements of that sequence in the interval [1, N]. However, assuming a local density of the form
x−α(x) such that C(N) ∼ ∫ N

2 x−α(x)dx is not appropriate in general. Indeed, the power relation
for perfect power numbers over an interval [1, Ns] that belongs to (2.9), namely

α(Ns)= 2s−1+α(N)
2s

, α(N)= c
5pN

, (3.1)

does not vary smoothly in [1, Ns], which should be the case for such an approximation. However,
this drawback can be overcome as follows. Denote by Qs(Ns) the counting function for powers
of perfect power numbers in the interval [1, Ns]. Instead of

∫ Ns

2 x−α(Ns)dx define

Qs(Ns)= (2s)−1 ·
∫ Ns

2
x−α(Ns)dx, (3.2)

where the integral pre-factor is chosen to fulfil the asymptotic limiting value for the perfect
power number counting function, that is (note that ns

pp < Ns if, and only if, one has npp < N )

lim
N→∞

Qs(Ns)p
N

= 1. (3.3)

In fact, by Jamkiczuk [14, Theorem 5], an infinite sequence of asymptotic expansions for the
counting function is known, one for each odd prime number. However, it suffices to use the
simple asymptotic estimate (3.3) that has been proved in Nyblom [12, Theorem 2.1]. From (3.2)
one gets for arbitrary s = 1,2, . . .

Qs(Ns)= (2s)−1 ·
∫ Ns

2
x−α(Ns)dx = 1

2s · (1−α(Ns))
·Ns·(1−α(Ns)). (3.4)
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With (3.1) this transforms to

Qs(Ns)= 1
1−α(N)

·N0.5(1−α(N)) =
p

N ·
5pN

5pN − c
·exp

(
−1

2
c

ln(N)
5pN

)
, (3.5)

which is independent of s and simply denoted by Q(N). The equality Qs(Ns) =Q(N) reflects
the fact that there are as many powers of perfect power numbers in [1,Ns] as there are perfect
power numbers in [1,N]. Now, what is a good value of c ∈ [1, 5pN)? Clearly, the factor

fN(c)=
5pN

5pN − c
·exp

(
−1

2
c

ln(N)
5pN

)
(3.6)

converges to 1 as N →∞ for any fixed c. Its derivative with respect to c satisfies the property

∂

∂c
fN(c)< 0, for all c ∈

[
1,

ln(N)−2
ln(N)

5pN
)
⊆ [

1, 5pN
)
, for all N ≥ 44, (3.7)

which implies the following min-max property of (3.7) at c = 1:

min
N≥1020

{
max

c∈[1, ln(N)−2
ln(N) · 5pN)

fN(c)
}
= f1020(1)= 0.9978. (3.8)

Therefore, the size-dependent exponent (3.1) with c = 1 not only minimizes the absolute
deviations between the LL estimator and the MAD (resp. WLS) estimators over the finite
ranges of powers from perfect power numbers [1,105m·s], m = 2, . . . ,6, s = 1,2,3,4,5, as shown in
Section 2, but it turns out to be uniformly best with maximum error less than 2.2 ·10−3 against
the asymptotic estimate, at least if N ≥ 1020 . Moreover, one has the following limiting result.

First Digit Theorem for Powers of Perfect Powers (GBL for powers of perfect powers).
The asymptotic distribution of the first digit of power sequences from perfect power numbers
ns

pp < 105m·s , m ≥ 2, for fixed s = 1,2,3, . . ., as m →∞, is given by

lim
m→∞

Is
5m·s(d)

S(105m)
= lim

m→∞PGB
α(5m·s)(d)= PGB

(2s)−1(d), d = 1, . . . ,9, α(5m · s)= 1
2s

(
1− 1

10m

)
. (3.9)

It is important to note that the size-dependent GBL parameter (3.9) is proportional to half of
the inverse power. This contrasts with [5], [6], [17], where the size-dependent GBL parameters
are proportional to the inverse power. Finally, the next Table 2 compares the new counting
function Q(N) =Qs(Ns), for all s = 1,2, . . ., with the asymptotic counting functions Sas(N) in
(2.7) and

p
N in (3.3). While Sas(N) converges to

p
N from above the function Q(N) does the

same from below.
Let us conclude and present a brief outlook on future work in this area. Departures from

Benford’s law occur quite frequently. For the sequences of integer powers, square-free integer
powers, powers of perfect powers, and prime numbers (see [17]), the observed discrepancies can
be explained in a non-trivial way. More precisely, the first significant digits of these sequences
obey a generalized Benford law with size dependent parameter proportional to the inverse of a
multiple of the power exponent. In future work, we intend to pursue the present approach and
analyse along the same line other important number theoretical integer sequences.
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Table 2. Comparison of perfect power number counting functions for N = 105m

m Sas(N) Q(N) Sas(N)/
p

N Q(N)/
p

N

2 102208 90025 1.022080 0.900250

3 30723460 31112471 1.003184 0.983863

4 10'004'649'434 9'977'998'438 1.000465 0.997800

5 3'162'493'188'959 3'161'399'228'458 1.000068 0.999722

6 1'000'010'000'900'000 999'966'9461'786'523 1.000010 0.999966

Appendix. Tables of First Digits for Powers of Perfect Power Numbers

Based on the recursive relation (2.3)-(2.4), the calculation of Is
5m·s(d), m = 2, . . . ,6, is

straightforward. These numbers are listed in Table A.1. The entry s → ∞ corresponds to
the limiting Benford law as the power goes to infinity.

Table A.1. First digit distribution of powers from perfect powers up to 105m·s , m = 2, . . . ,6, s =
1,2,3,4,5,∞
XXXXXXXXXXs = 1

1st digit
102'207 31'723'459 10'004'649'433 3'162'493'188'958 1'000'010'000'900'000

1 19'655 6'080'457 1'916'682'428 605'825'630'753 191'565'791'418'106

2 15'047 4'664'197 1'470'653'116 464'863'159'841 146'993'453'440'479

3 12'669 3'931'349 1'239'783'414 391'896'173'692 123'921'139'420'180

4 11'153 3'463'126 1'092'249'719 345'266'469'200 109'176'669'536'772

5 10'074 3'130'581 987'454'422 312'144'062'359 98'703'222'173'932

6 9'259 2'878'628 908'047'094 287'045'582'050 90'766'956'805'042

7 8'614 2'679'178 845'181'122 267'175'119'461 84'483'805'200'026

8 8'088 2'516'191 793'804'639 250'936'042'187 79'348'909'957'272

9 7'648 2'379'725 750'793'479 237'340'949'415 75'050'052'948'190
XXXXXXXXXXs = 2

1st digit
102'206 31'723'458 10'004'649'432 3'162'493'188'957 1'000'010'000'900'000

1 24'887 7'714'161 2'432'312'211 768'836'150'790 243'112'113'929'420

2 16'671 5'171'702 1'630'874'475 515'517'295'553 163'011'126'882'218

3 12'891 4'000'271 1'261'567'173 398'784'358'135 126'099'353'989'648

4 10'648 3'306'928 1'042'969'199 329'687'776'396 104'250'494'249'911

5 9'151 2'842'164 896'426'207 283'366'645'443 89'603'385'678'048

6 8'066 2'506'067 790'450'257 249'868'230'361 79'010'911'161'490

7 7'240 2'250'226 709'775'218 224'367'151'316 70'947'253'653'262

8 6'592 2'048'100 646'036'130 204'219'370'152 64'576'349'944'280

9 6'060 1'883'839 594'238'562 187'846'210'811 59'399'011'435'721

Table Contd.
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XXXXXXXXXXs = 3
1st digit

102'207 31'723'459 10'004'649'433 3'162'493'188'958 1'000'010'000'900'000

1 26'787 8'305'972 2'619'110'080 827'890'749'711 261'786'072'543'005

2 17'151 5'322'015 1'678'327'501 530'519'549'944 167'755'084'207'379

3 12'886 3'999'937 1'261'469'949 398'753'886'392 126'089'730'542'031

4 10'425 3'237'252 1'020'978'124 322'735'604'409 102'052'117'937'611

5 8'810 2'735'780 862'847'106 272'750'895'697 86'246'525'098'448

6 7'663 2'378'751 750'260'382 237'162'441'870 74'993'144'233'644

7 6'790 2'110'488 665'666'911 210'422'511'539 66'537'739'600'101

8 6'116 1'900'934 599'581'714 189'532'962'548 59'932'274'803'397

9 5'579 1'732'330 546'407'666 172'724'586'848 54'617'311'934'381
XXXXXXXXXXs = 4

1st digit
102'206 31'723'458 10'004'649'432 3'162'493'188'957 1'000'010'000'900'000

1 27'755 8'609'781 2'715'007'714 858'208'082'123 271'372'876'206'818

2 17'381 5'392'856 1'700'689'802 537'589'354'833 169'990'670'581'712

3 12'868 3'995'294 1'260'006'484 398'291'313'448 125'943'462'072'868

4 10'309 3'199'359 1'009'016'850 318'954'173'825 100'856'373'709'173

5 8'635 2'681'053 845'573'653 267'290'022'564 84'519'713'596'426

6 7'456 2'314'907 730'109'173 230'791'755'873 72'978'634'509'405

7 6'571 2'041'601 643'919'475 203'547'159'979 64'363'645'729'936

8 5'886 1'829'290 576'966'124 182'383'133'528 57'671'386'034'917

9 5'346 1'659'318 523'360'158 165'438'192'785 52'313'238'458'744
XXXXXXXXXXs = 5

1st digit
102'207 31'723'459 10'004'649'433 3'162'493'188'958 1'000'010'000'900'000

1 28'353 8'794'459 2'773'299'821 876'636'724'353 277'200'295'549'123

2 17'510 5'433'880 1'716'641'490 541'648'003'862 171'285'464'226'364

3 12'859 3'991'079 1'258'675'176 397'870'469'182 125'810'386'560'405

4 10'233 3'175'683 1'001'543'867 316'591'659'559 100'109'311'304'827

5 8'523 2'647'777 835'071'901 263'969'968'083 83'469'861'426'531

6 7'334 2'276'601 718'017'241 226'968'959'988 71'769'807'116'412

7 6'440 2'000'621 630'983'100 199'457'387'662 63'070'395'764'702

8 5'756 1'786'960 563'602'327 178'158'225'583 56'335'403'693'624

9 5'199 1'616'399 509'814'510 161'155'790'686 50'959'075'258'012
XXXXXXXXXXs =∞

1st digit
102'207 31'723'459 10'004'649'433 3'162'493'188'958 1'000'010'000'900'000

1 30'767 9'549'713 3'011'699'575 952'005'310'959 301'033'006'234'865

2 17'998 5'586'224 1'761'731'315 556'887'407'399 176'093'020'123'754

3 12'770 3'963'489 1'249'968'260 395'117'903'561 124'939'986'108'111

4 9'905 3'074'321 969'550'707 306'477'256'080 96'910'982'195'406

5 8'093 2'511'903 792'180'608 250'410'151'319 79'182'037'931'348

6 6'842 2'123'784 669'779'161 211'718'766'229 66'947'459'158'762

7 5'927 1'839'705 580'189'099 183'399'137'331 57'992'526'949'349

8 5'228 1'622'735 511'763'055 161'769'503'838 51'153'034'018'643

9 4'677 1'451'536 457'787'652 144'707'752'242 45'757'948'176'763
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