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1. Introduction
In the theory of approximation, it is important to study about the limit of convergence of
approximating function and the limit of approximant. The relating study for a discontinuous
function φ(x), defined as φ(x)= (π− x)/2, 0< x < 2π= 0, x = 0, 2π, has been firstly investigated
by J.W. Gibbs by taking partial sums {sn(x)} of the Fourier series of φ(x) in the neighborhood of
a point of discontinuity of φ(x). Since

∞∑
k=1

sinkx
k

= π− x
2

=φ(x), 0< x < 2π . (1.1)

Here we see that the series is not uniformly convergent in the neighbourhood of x = 0. Let x > 0,
we have

sn(n)=
(−x

2

)
+

∫ x

0
Dn(t)dt (1.2)

when Dn(t)= sin
(

n+1
2

)
tsin

(
t
2

)
.
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Since the integral

2
π

∫
0

(
sinnt

t

)
is uniformly bounded in n and ξwe have

sn(x)+
( x
2

)
=

∫ nx

0

(
sin t

t

)
dt+O(1) . (1.3)

Uniformly in 0 ≤ x ≤ π. Thus sn(x)are uniformly bounded, but the curve of approximation
overshoot the mark in the neighborhood of x = 0 in the interval (0,π] (Knopp [5]).
The smoothing of convergence of Fourier series is quite important for filter design (Hamming [3]).
More precisely, we consider the integral of (sin t)/t over the intervals (kπ, (k+1)π), k = 0,1,2, . . .
We know that these integrals decrease in absolute value and are of alternating sign (Zygmund
[7]) for k = 0,1,2, . . ., the curve

y=
∫ x

0

(
sin t

t

)
dt =G(x), say .

Takes maxima with M1 > M3 > M5 . . . at the points π,3π,5π, . . . and minima M2 < M4 < M6 < . . .
at points 2π,4π,6π, . . . from (1.3), we have

sn(π/n)→
∫ π

0

(
sin t

t

)
dt >π/2 .

Thus though sn(x) tends to φ(x) at every fixed x, 0< x < 2π, the curve y= sn(x), which passes
through the point (0,0) condense to the interval 0≤ y≤G(π) of the y-axis, the ratio of whose
length to that of interval 0≤ y≤φ(+O)=π/2 is(

2
π

)∫ π

0

(
sin t

t

)
dt = 1.179 .

Similarly, to the left of x = 0, the curve y = sn(x), condense to the interval −G(π) ≤ y ≤ 0 this
behaviour is called Gibbs phenomenon i.e. if the ratio [sn(+0)− sn(0)]/[φ(+0)−φ(0)]> 1, then
sn(x) show Gibbs phenomenon in the right of x = 0.
Let {pn} and {qn} be any two non-negative and non increasing sequences with Pn and Qn as
their n-th partial sums respectively and let

Rn = (p∗ q)n =
n∑

k=0
pn−k · qk =

n∑
k=0

Pkqn−k, tends to infinity as n →∞ .

The sequence to sequence transformation for the {sn} sequence of partial sums (Borwein [1])

tp,q
n = 1

Rn

n∑
k=0

pn−kqksk .

If tp,q
n → s, as n →∞ then {sn} is (N, pn, qn) summable to s.
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2. Known Results
Zygmund [7] has proved the following theorem on Gibbs phenomenon for (C,α) method of
summability.

Theorem 2.1. There is an absolute constant α0 , 0<α0 < 1, with the following property: if f (x)
has a simple discontinuity at a point ξ, the mean σα

n(x; f ) shows Gibbs phenomenon at ξ for
α<α0 but not for α≥α0 .

Later, Hille and Tamarkin [4] have proved the following theorem for (N, pn) method of
summability.

Theorem 2.2. Let {pn} be a non negative, non increasing sequence and let tn(x)denote the
(N, pn) means of {sn(x)}. Then for [ f (x+ t)+ f (x− t)− { f (x+0)+ f (x−0)}] = 0(1) as t → 0 then
tn(x)→ 1

2 [ f (x+0)+ f (x−0)] iff

n∑
k=1

Pk

k
≤ mPn, n = 1,2, . . . (2.1)

where M is some positive constant.

We know that the condition for sequence {pn} is equivalent to Dikshit and Kumar [2],

K ≥ Pm

∞∑
n=m

(
1

nPn

)
(2.2)

where k is some positive constant.

Hence
(

Pk

Pn

)
≤

(
k
n

)α
, 1≤ k ≤ n, for some α in (0,1).

Later on Singh [6] have proved the following theorem.

Theorem 2.3. Let {pn}be a non negative and non increasing sequence. Let α be a number such

that
(

Pk

Pn

)
≤

(
k
n

)α
, 1≤ k ≤ n then there exist a constant α0 , 0<α0 < 1, such that (N, pn) method

shows Gibbs phenomenon for α<α0 , but not for α≥α0 at a point of simple discontinuity ξ of
f (x).

3. Main Result
In this paper we have proved the following theorem, on the Gibbs Phenomenon for |N, pn, qn|-
summability method.

Theorem 3.1. Let {pn} and {qn} are non negative and non increasing sequence with convoluted

product (Rn). Let α be a number such that, Rk
Rn

≤
(

k
n

)α
, 1 ≤ k ≤ n, then there exist a constant

α0 , 0<α0 < 1, such that the |N, pn, qn| method shows Gibbs phenomenon for α<α0 but not for
α≥α0 at a point of simple discontinuity ξ of f (x).
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4. Lemmas
We have needed the following lemmas for the proof of our theorem.

Lemma 4.1. Let {pn} and {qn} are two be any non negative and non increasing sequences with
convoluted product Rn and let

(Rm)
∞∑

n=m

1
n

Rn ≤ K , m = 1,2 . . . (4.1)

where k is some positive constant, then

Rm

Rn
≤

(m
n

)δ
, for some 0< δ≤ 1, 1≤ m ≤ [n/c], (4.2)

where c is some fixed positive integer.

Proof. For any integer K , we have

K ≥ Rm

∞∑
n=m

1
n

Rn ≥ Rm

km∑
n=m

1
n

Rn

≥ Rm

Rkm
logk . (4.3)

That is

Rkm

Rm
≥ (

log4 k log4e/k
)

> 4, for large k ≥ k0 . (4.4)

We take for convenience k0 ≥ 4. For a given sufficiently large n, we can find a fixed integer
c ≥ k0 , and b such that

cb+(1/2)m ≤ n < cb+1m

we have

Rn

Rm
=

(
Rn

Rcbm

)(
Rebm

Rm

)
≥

(
Rn

Rcbm

)
4b (4.5)

by a repeated application of the fact we have

Rkm/Rm > 4.

we can find a number µ, (1/2)≤µ such that n = cb+µm.
We have,

b = log4(n/m)δ−µ (4.6)

where δ= (1/ log4 c), obviously δ≤ 1.

Communications in Mathematics and Applications, Vol. 5, No. 3, pp. 111–118, 2014



On the Gibbs Phenomenon for |N, pn, qn|-Summability Method: A.K. Raghuvanshi 115

From (4.5) and (4.6), we get(
Rn

Rm

)
≥ Rb+µ

c m
Rb

c m
(4)log4(n/m)δ−µ

= Rb+µ
c m

Rb
c m

(4)−µ
( n
m

)δ
. (4.7)

Again from (4.1), we have

k ≥ Rb
c m

cb+µm∑
n=cbm

1
n

Rn ≥ Rb
c m

Rb+µ
c m

log cµ ,

Rb+µ
c m

Rb
c m

≥ (log cµ/k) . (4.8)

Now from (4.7) and (4.8), we obtain

Rn

Rm
≥ log cµ

k
4−µ(n/m)δ

≥ 4µ4−µ(n/m)δ

by the fact, 4µ ≤ 4µ , for 1
2 ≤µ< 1.

Thus
Rm

Rn
≤

(m
n

)δ
, 0< δ≤ 1, 1≤ m ≤ [n/c].

This proves the lemma.

Lemma 4.2 (Zygmund [7]). Given any m > 0, there exist a δ(m)> 0 and n0(m) such that

δn(x)<
(π
2

)
−δ for 0≤ x ≤

(m
n

)
, n > n0.

5. Proof of the Theorem
We prove it, for the function

f (x)sin x+ (sin2x/2)+ (sin3x/3)+ . . . at ξ= 0

Observing that, sn = cos x+cos2x+ . . ., we get

sn(x)=
∫ x

0

(
n∑

k=1
coskt

)
dt =π−

∫ x

π
Dn(t)dt,

and

tp,q
n (x)= ((π− x)/2)− (1/2Rn)

n∑
k=0

(∫ π

x
qk pn−k

sin(k+ 1
2 )t

sin t/2
dt

)

= ((π− x)/2)− 1
2Rn


 n/2∑

k=0
+

n∑
k= n

2 +1

∫ π

x
pn−kqk

sin(k+ 1
2 )t

sin t
2

dt


= π− x

2
+Σ1 +Σ2 (say) .
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Applying Abel’s Lemma, we find that

|Σ1| ≤ 1
n

(sin(t/2))2 . (5.1)

Hence ∣∣∣∣∫ π

x
Σ1dt

∣∣∣∣≤ 2
2

cot(x/2) . (5.2)

Again using mean value theorem, we have for some x < ξ<π∣∣∣∣∫ π

x
ε2dt

∣∣∣∣≤ k
(

R1/x

nRn sin(x/2)

)
. (5.3)

Since R1/ξ ≤ R1/x for x < ξ.
Combining (5.1), (5.2) and (5.3), we get that

tp,q
n (x)≤ (π− x)

2
+ 2

n
cot x/2+k

(
R1/k

nRn sin x/2

)
. (5.4)

By the hypothesis that
(

Rk
Rn

)
≤ ( k

n
)α

, 0<α< 1, we see that the second term in (5.4) dominate the

last term thus if, nx is sufficiently large, say nx > m, n ≥ n1 and nx2 > 1, we find that,∣∣tp,q
n

∣∣≤π/2 for
( n
m

≤ x ≤π
)

. (5.5)

Now consider tp,q
n −σ(x), where σ(x) denote the (C,1) mean of sn(x), we have,

∣∣tp,q
n −σ(x)

∣∣= ∣∣∣∣∣ n∑
k=0

Pn−kqk

Rn

sinkx
k

−
n∑

k=0

n−k+1
n+1

sinnkx
k

∣∣∣∣∣
≤ x

n∑
k=0

n−k+1
Rn

(
Pn−kqk

n−k+1
− Rn

n+1

)
.

Since (Rn/n)is non increasing for {pn}and {qn}, we have

∣∣tp,q
n (x)−σ(x)

∣∣≤ x
[

(n+1)α+1

(α+1)nα
− n+2

2

]

= nx(1−α)
2(α+1)

+ x
[

(x+1)α+1 − (n)α+1

(α+1)nα
−1

]
since (n+1)α+1 −nα+1 ≤ (2n)α and 2α ≤α+1 for 0≤α≤ 1, we have

∣∣tp,q
n (x)−σn(x)

∣∣≤ [
nx(1−α)
2(α+1)

]
,

that is,

tp,q
n (x)≤σn(x)+

(nx
2

)
(1−α)
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By Lemma 4.2, we have that,

tp,q
n ≤ π

2
−δ(m)+ m1

2
(1−α), 0≤ nx ≤ m1 .

Now if we take α such that, (1−α) m1
2 −δ(m1)< 0, then tp,q

n (x)≤ π
2 , for 0≤ nx ≤ m1 .

In order to show that for positive and small enough α, the Gibbs phenomenon occurs, and it
does not occur for α≥ 1. We consider the difference tp,q

n −δn(x).
We have, ∣∣tp,q

n (x)− sn(x)
∣∣≤ x(n−R

′
n/Rn)< nxα .

Thus, ∣∣tp,q
n (π/n)− sn(π/n)

∣∣≤πα, for 0<α< 1 .

Consequently, sn(π/n)−πα≤ tp,q
n (π/n)≤πα+ sn(π/n)) from the above inequality, we see that for

small α,

lim
n→∞ inf tp,q

n (π/n)>π/2

by the fact that sn(π/n) tends to a limit greater than (π/2).
Hence the Gibbs phenomenon occurs for small value of α. This proves that there exist α0 ,
0<α0 < 1, such that for α<α0 , the Gibbs phenomenon exist while for α>α0 , it does not exist.

6. Corollaries
Our theorem have the following results:

Corollary 6.1. If we take pn = 1 then our theorem reduces to Theorem 2.3.

Corollary 6.2. If we take Qn = 1 then our theorem shows the Gibbs Phenomenon for |N̄, pn|-
summbility method.

7. Conclusion
The theorem which has proved in this research article have more general results rather than
some previous non results on the Gibbs Phenomenon for summability methods. Hence this will
be enrich the literature on the Gibbs Phenomenon for summability methods.
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