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1. Introduction
Let β ∈ (0,1), consider the following parabolic problem with a time-fractional Partial Integro
Differential Equation (PIDE) of the Voltera type (Das et al. [7])
∂βZ
∂tβ −p(x, t)∂

2Z
∂x2 −q(x, t)∂Z

∂x +λ
∫ t

0 K(x, t−ξ)Z(x,ξ)dξ= f (x, t), for all (x, t)∈D̄=[0,1]×[0,1],
Z(x,0)=φ(x);

for all x ∈ [0,1],
Z(0, t)=ψ1(t), Z(1, t)=ψ2(t), for all t ∈ (0,1],

(1.1)

http://doi.org/10.26713/cma.v15i1.2506
https://orcid.org/0009-0000-1975-8370
https://orcid.org/0000-0002-0007-0477


464 A Novel Numerical Scheme for Time-Fractional Partial Integro . . . : A. Kumar and S. Gowrisankar

where p(x, t) and q(x, t) are continuous and bounded functions in the given domain D̄, K(x, t−ξ)
is a position (x) and time (t)-dependent absorbent term which may be related to diffusion
and reaction. Here, the reaction term

∫ t
0 K(x, t−ξ)Z(x,ξ)dξ involved in the above equation be

different from that used by Das and Gupta [6], Das et al. [7], Schot et al. [28], and f (x, t) is
the source term which is sufficiently finite time continuously differentiable function over D̄,
∂β

∂tβ represents the Caputo fractional differential operator of fractional order β. Also, f (x, t),
φ(x), ψ1(t) and ψ2(t) are continuously differentiable function over [0,1] and the integrand term
K(x, t−ξ) is sufficiently finite time continuously differentiable and bounded function over D̄.
We look on finding the approximate solution of the PIDE as analytical solution does not have
closed form always.

Because of its many applications in science and engineering, the diffusion equation has been
extensively investigated; however, the study takes on a different dimension when it is non-linear
and when the time dependent derivative in the standard diffusion equation is substituted with
a fractional derivative of order β. Non-linearity is a good topic since it may be predicted to a
significant extent with a thorough understanding of the corresponding equations. It is essential
to conduct a thorough and in-depth study of non-linear PDE that is connected to classical
mechanics. Non-linear diffusion equations are a significant class of parabolic equations that are
used in numerous image processing and computer vision techniques as well as a lot of physical
problems such as phase transition in electrical, electronic and mechanical engineering, biological
science problems and biochemistry. Singularity in the problem makes them demanding and
complex. The fractional differential equations are currently receiving a lot of attention due
to the reason that the fractional order integro partial differential equation system response
eventually converges to the integer order response of the system. The generation of fractional
Brownian motion is a significant result of these evolution equations.

Since fractional integro differential equations can accurately enumerate numerous
phenomena, physical processes and chemical reactions more so than traditional integer order
differential equations, they are receiving increasing amounts of attention in a variety of fields,
including finance (Mainardi et al. [20]), biological systems (Benson et al. [2]), and systems
exhibiting Hamilton chaos. An exact Fox H-function solution to the generalized linear fractional
reaction-diffusion equation has been derived by Zahran [38]. A non-linear diffusion equation
containing fractionally ordered spatial derivatives was solved by Silva et al. [31], and Lenzi et
al. [17]. Using VIM, in [5], Das have examined the fractional diffusion equation’s analytical
solution when an outside force is present. In the fractional-order quadratic auto-catalysis model
with linear admire’s approximate solutions, Saad et al. [26] used a numerical method based on
Lagrange polynomial interpolation. To solve the fractional Reaction-Diffusion Equation (RDE),
use the efficient and potent hybrid analytical technique known as q-HASTM.

To solve the fractional partial differential equations analytically and obtain closed-form
analytical solutions, a variety of techniques have been developed, including imaging technique,
the Fourier transform technique, the Mellin transform technique, the Laplace transform
technique, and the technique of separation of variables (Kilbas et al. [15], and Podlubny [23]).
Only a very small number of fractional partial differential equations, like integer-order
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differential equations, have closed-form analytical solutions available. As a result, numerical
methods must be applied generally. It appears necessary and perhaps more crucial to create
numerical techniques for resolving problems involving fractional differential and integrals. Two
methods for numerically discretizing fractional derivatives using finite difference techniques
make up the main outline of work.

On the definition of fractional derivatives, one is based by Grunwald and Letnikov.
Meerschaert and Tadjeran in [22] presented a shifted Grunwald formula to approximate
spatial fractional derivatives of order 0 ≤ β ≤ 1. The alternative involves using the concepts
of interpolating polynomials, such as the L1 approximation (Langlands and Henry [16]), L2

approximations (Lynch et al. [19]), to substitute the derivatives under the integration with
difference quotients.

According to Gorenflo [12], and Sousa [32], the fractional diffusion was discretized using the
shifted Grunwald formula and the advection term was roughly estimated using a first order
upwind finite difference. A discrete L2 norm’s stability and convergence were investigated and
examined. It was suggested by Liu et al. [18] that a L2 technique be used to discretize the
fractional Fokker-Planck equation. Based on the L1 approximation, Du et al. [10] developed a
compact difference scheme for the fractional diffusion-wave equation. The explicit and weighted
averaged difference schemes based on the Grunwald-Letnikov approximation were introduced by
Yuste and Acedo [37] and these two schemes were examined using the Von Neumann technique.
In order to demonstrate for the fractional reaction-sub-diffusion equation and sub-diffusion
equation respectively, the convergence and stability of the difference scheme, Chen et al. [3, 4]
developed the difference scheme also using the Grunwald-Letnikov formula and presented
Fourier techninique. Shen and Liu [30] provided a study of errors and suggested the space
fractional diffusion problem using an explicit finite difference technique. In their study of using
the equation of temporal fractional diffusion, an implicit difference approximation, Zhuang and
Liu [40] explored the method’s convergence and stability. Langlands and Henry [16] also looked
into this issue, offered a numerical method that was implicit (L1-approximation) and talked
on the precision and stability of this technique. For an explanation of sub-diffusion using the
fractional diffusion equation, Chen et al. [3] developed a Fourier technique. They also provided
analysis of the difference approximation method’s stability and overall accuracy. The implicit
numerical techniques for the anomalous sub diffusion equation also have a new solution and
analytical techniques recommended by Zhuang et al. [41].

When working on the non-linear integral equation, Gordji et al. in [11], and Wongyat and
Sintunavarat in [36] demonstrated the solution’s existence and uniqueness characteristics.
From a numerical perspective, Wang et al. [35] established an effective using a weakly singular
convolution kernel, the second-order Volterra integral equations can be evaluated numerically.
When a differential operator appears in an integral equation, the equation is referred to
as a Integro-Differential Equation (IDE). The model problem was defined in Banach spaces
over an unrestricted domain and it was demonstrated by Tari and Shahmorad [33] that the
requirements for existence and uniqueness of a class of solutions of non-linear IDEs apply.
The alternate method is to use numerical methodologies because it can be difficult to solve
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a problem analytically at times. By Zhang and Hao [39], the matrix Tau technique was developed
to resolve two dimensional linear Volterra Integro-Differential Equations (VIDEs). In addition
to studying the linear Fredholm-VIDEs, Shahmorad [29] calculated the error boundaries for
the specified numerical approach.

Many researchers have recently worked on PIDE. Thorwe and Bhalekar [34], to name a
few, took into consideration a linear PIDE with a convolution kernel. To solve the equation
analytically, they employed the Laplace transform technique. In his work, Dehghan [8]
developed a second order numerical strategy to determine a PIDE with a weakly unique
kernel. An IDE’s analytical solution gets more challenging when fractional order derivatives are
included. The presence and originality requirements were examined in the works of Hamoud
et al. [14], and Matar [21]. In addition, a number of numerical techniques were created to
evaluate the fractional order Partial Integro Differential Equations (PIDEs). With the purpose
of evaluating fractional order Partial Integro Differential Equation (PIDE) with a finite delay,
Abbas et al. [1] examined several conclusions about existence, uniqueness, and global asymptotic
stability. Santra and Mohapatra [27] studied a time fractional partial integro-differential
equation with a numerical solution of the Volterra type, where the time derivative is specified
in the Caputo sense. The approximation solution converges to the precise answer after the error
analysis is completed.

In this study, the fractional diffusion equation is solved using the finite difference method in
the presence of both a linear external force and an absorbent term. Analytical formulations for
various Brownian movements are obtained using the initial condition. An objective of the study
is to error analysis on the fractional diffusion equation with the presence of the linear external
force. To the author’s knowledge, no one has yet solved the non-linear time fractional diffusion
equation in the presence of the kind of external force and the specified kind of reaction term
consider in our case.

2. Preliminaries
This section contains definitions and characteristics of fractional derivatives and integrals that
we will utilise in our subsequent analysis (see Diethelm [9], and Podlubny [23]).

Definition 2.1. Let V and W be normed linear spaces over the underling field R or C (Santra
and Mohapatra [27]) then the linear operator A : V →W is said to be bounded, if there exist a
positive constant C such that

∥A(v)∥W ≤ C∥v∥V , for all v ∈V . (2.1)

Theorem 2.1. Let V and W be normed linear spaces (Santra and Mohapatra [27]), if and only
if the linear operator A : V →W is continuous throughout V , then it is bounded.

Definition 2.2. Let us say that V ⊆ Rn, the function f : V → V maps the contraction if the
following inequality holds,

∥ f (v1)− f (v2)∥ ≤ c∥v1 −v2∥, for all v1,v2 ∈V , (2.2)

where c denotes the contraction constant with range 0≤ c < 1.
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Definition 2.3. Let V and W represent two normed linear spaces over R or C and Dv : V →W
is a linear operator. If there exists a positive constant C such that (Santra and Mohapatra [27]),
the linear operator Dx is said to be bounded, if it satisfy the following inequality:∥∥∥∥ ∂

∂v
[E(v)(v−w)]

∥∥∥∥≤ C∥E(v)∥∥v−w∥, for all v ∈V , w ∈W . (2.3)

Theorem 2.2. Assuming that V ⊆Rn is complete and that ζ : V →V is a contraction mapping
then ζ has a unique fixed point p∗ in V .

Definition 2.4. For every i = 0,1, . . ., M, j = 0,1, . . .N, assuming that the mesh function V
j
i

corresponding to V : Ω̄ ⊂ R2 →R where V is a continuous function (Santra and Mohapatra [27]).
Then, we can define

∥V∥ = max
(x,t)∈Ω̄

|V(x, t)| and ∥V j∥ = max
0≤i≤M

|V j
i | . (2.4)

Definition 2.5. A real valued function ϕ(t) ∈ Cµ, µ ∈R (Prakash and Kaur [24]) if there exist a
number p ∈R (p >µ) such that ϕ(t)= tpϕ1(t), where ϕ1(t) ∈ C[0,∞) and ϕ(t) ∈ Cm

µ if ϕ(m) ∈ Cµ,
m ∈N∪ {0}.

Definition 2.6. The Riemann-Liouville fractional integral operator of order β > 0 for the
function ϕ(t) ∈ Cµ, µ≥−1 is defined as (Ray and Bera [25]):

Jβϕ(t)=
{ 1
Γβ

∫ t
0

ϕ(υ)
(t−υ)1−β

dυ, β> 0, t > 0,

ϕ(t), β= 0.
(2.5)

Definition 2.7. The Caputo fractional derivative operator of order β > 0 for the function
ϕ(t) ∈ Cm

−1, m ∈N∪ {0} is defined as (Ray and Bera [25]):

Dβ
t ϕ(t)=

{
1

Γn−β
∫ t

0
ϕ(n)(υ)

(t−υ)1−n+β dυ, n−1<β< n, n ∈N,
dn

dtnϕ(t), β= n ∈N.
(2.6)

Following are some of the properties of Caputo-fractional derivatives:
(a) Dβ

t Jβ
t ζ(t)= ζ(t).

(b) Jβ
t Dβ

t ζ(t)= ζ(t)−
n−1∑
k=0

ζ(k)(0+) (t−a)k

k! , t > 0.

(c) Jβ
t Dβ

t ζ(x, t)= ζ(x, t)−ζ(x,0).

3. Continuous Problems
Theorem 3.1. Let p(x, t) and q(x, t) be continuous and bounded in the region D̄ such that
0< ∥p(x, t)∥ ≤ K1, 0< ∥q(x, t)∥ ≤ K2 and 0< ∥K(x, t−ξ)∥ ≤ M where K1, K2 and M are positive
generic constants, respectively. If the quantity (C1+C2)(β+1)+|λ|M

Γ(β+2) < 1 then there exists a unique
solution Z(x, t) of (1.1) where C1 and C2 be two positive constants.

Proof. Operating Jα on both side of equation (1.1) we obtained,

Jβ∂
βZ

∂tβ
− Jβ

[
p(x, t)

∂2Z

∂x2

]
− Jβ

[
q(x, t)

∂Z

∂x

]
+λJβ

∫ t

0
K(x, t−ξ)Z(x,ξ)dξ= Jβ f (x, t). (3.1)
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That is,

Z(x, t)−Z(x,0)− Jβ

[
p(x, t)

∂2Z

∂x2

]
− Jβ

[
q(x, t)

∂Z

∂x

]
+λJβ

∫ t

0
K(x, t−ξ)Z(x,ξ)dξ= Jβ f (x, t), (3.2)

Z(x, t)=φ(x)+ Jβ

[
p(x, t)

∂2Z

∂x2

]
+ Jβ

[
q(x, t)

∂Z

∂x

]
−λJβ

∫ t

0
K(x, t−ξ)Z(x,ξ)dξ+ Jβ f (x, t). (3.3)

Let Z(x, t)= HZ(x, t), for all (x, t) ∈ D̄ then

HZ(x, t)=φ(x)+ Jβ

[
p(x, t)

∂2Z

∂x2

]
+ Jβ

[
q(x, t)

∂Z

∂x

]
−λJβ

∫ t

0
K(x, t−ξ)Z(x,ξ)dξ+ Jβ f (x, t). (3.4)

Let Z1, Z2 ∈ C(D̄), then we have,

HZ1(x, t)=φ(x)+ Jβ

[
p(x, t)

∂2Z1

∂x2

]
+ Jβ

[
q(x, t)

∂Z1

∂x

]
−λJβ

∫ t

0
K(x, t−ξ)Z1(x,ξ)dξ+ Jβ f (x, t)

(3.5)
and

HZ2(x, t)=φ(x)+ Jβ

[
p(x, t)

∂2Z2

∂x2

]
+ Jβ

[
q(x, t)

∂Z2

∂x

]
−λJβ

∫ t

0
K(x, t−ξ)Z2(x,ξ)dξ+ Jβ f (x, t).

(3.6)
Since

∥HZ1 −HZ2∥ =
∥∥∥∥Jβ

[
p(x, t)

∂2

∂x2 (Z1 −Z2)
]
+ Jβ

[
q(x, t)

∂

∂x
· (Z1 −Z2)

]
−λJβ

∫ t

0
K(x, t−ξ)(Z1 −Z2)(x,ξ)dξ

∥∥∥∥ , (3.7)

∥HZ1 −HZ2∥ ≤
∥∥∥∥Jβ

[
p(x, t)

∂2

∂x2 (Z1 −Z2)
]∥∥∥∥+∥∥∥∥Jβ

[
q(x, t)

∂

∂x
· (Z1 −Z2)

]∥∥∥∥
+

∥∥∥∥λJβ

∫ t

0
K(x, t−ξ)(Z1 −Z2)(x,ξ)dξ

∥∥∥∥ (3.8)

∥HZ1 −HZ2∥ ≤
∥∥∥∥ 1
Γ(β)

∫ t

0
(t−ξ)β−1 p(x,ξ)

∂2

∂x2 ((Z1 −Z2)(x,ξ))dξ
∥∥∥∥

+
∥∥∥∥ 1
Γ(β)

∫ t

0
(t−ξ)β−1q(x,ξ)

∂

∂x
((Z1 −Z2)(x,ξ))dξ

∥∥∥∥
+

∥∥∥∥ λ

Γ(β)

∫ t

0
(t−ρ)β−1

∫ ρ

0
K(x,ρ−ξ)(Z1 −Z2)(x,ξ)dρdξ

∥∥∥∥ (3.9)

∥HZ1 −HZ2∥ ≤ 1
Γ(β)

∫ t

0
(t−ξ)β−1∥p(x,ξ)∥

∥∥∥∥ ∂2

∂x2 ((Z1 −Z2)(x,ξ))
∥∥∥∥dξ

+ 1
Γ(β)

∫ t

0
(t−ξ)β−1∥q(x,ξ)∥

∥∥∥∥ ∂

∂x
((Z1 −Z2)(x,ξ))

∥∥∥∥dξ

+ |λ|
Γ(β)

∫ t

0
(t−ρ)β−1

∫ ρ

0
∥K(x,ρ−ξ)∥∥(Z1 −Z2)(x,ξ)∥dρdξ. (3.10)

Now, by Definitions 2.1 and 2.3, and using Theorem 2.1, we get

∥HZ1 −HZ2∥ ≤ 1
Γ(β)

(
tβ

β

)
∥p(x,ξ)∥

∥∥∥∥ ∂2

∂x2 (Z1 −Z2)(x,ξ)
∥∥∥∥
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+ 1
Γ(β)

(
tβ

β

)
∥q(x,ξ)∥

∥∥∥∥ ∂

∂x
(Z1 −Z2)(x,ξ)

∥∥∥∥+ |λ|M
Γ(β+2)

∥(Z1 −Z2)(x,ξ)∥, (3.11)

∥HZ1 −HZ2∥ ≤ K1 ·K4 · (β+1)∥(Z1 −Z2)(x,ξ)∥
Γ(β+2)

+ K2 ·K3 · (β+1)∥(Z1 −Z2)(x,ξ)∥
Γ(β+2)

+ |λ|M
Γ(β+2)

∥(Z1 −Z2)(x,ξ)∥, (3.12)

where K1, K2, K3, K4 and M are positive constants. Therefore, we have

∥HZ1 −HZ2∥ ≤ (K1 ·K4 +K2 ·K3)(β+1)+|λ|M
Γ(β+2)

∥Z1 −Z2∥ . (3.13)

Since K1, K2, K3, K4, λ and M be chosen such a way that(
K1K4 +K2K3

)
(β+1)+|λ|M

Γ(β+2)
< 1 and

(
C1 +C2

)
(β+1)+|λ|M

Γ(β+2)
< 1,

where C1 = K1K4, C2 = K2K3, therefore we have

∥HZ1 −HZ2∥ < ∥Z1 −Z2∥. (3.14)

This proves that H is a contraction function and we look that (C(D̄),∥ · ∥) is a Banach space.
Hence by Theorem 2.2 one can conclude that equation (1.1) has a unique solution Z(x, t) in D̄.

4. Numerical Approximations
Let us consider M and N be two fixed positive integers. Define the grid xi = ih for i =
0,1,2,3, . . .M and t j = jτ for j = 0,1,2,3, . . .N, where h is the step length for spatial direction and
τ is the step length for time direction and are defined by h = 1

M and τ= 1
N . Then, the uniform

mesh is defined as D̄1 = {(xi, t j) : i = 0,1,2,3, . . .M, j = 0,1,2,3, . . .N}. Let {Z(xi, t j)}
M, N
i=0, j=0 be the

exact solution and denote {Z j
i }
M, N
i=0, j=0 as the approximate solution at each mesh point (xi, t j) for

the equation (1.1).
Standard approximations are used to discretize the first and second order spatial derivatives

as follows, ∂Z
∂x (xi, t j) ≈ D0

xZ
j
i = Z

j
i+1−Z

j
i

h , and ∂2Z
∂x2 (xi, t j) ≈ δ2

xZ
j
i = Z

j
i−1−2Z j

i+Z
j
i+1

h2 , respectively.

The Caputo-fractional derivative Dβ
t Z which is discretized by the following

Dβ
t Z(xi, t j)= 1

Γ(1−β)

j−1∑
k=0

∫ tk+1

s=tk

(t j − s)−β
∂Z

∂s
(xi, s)ds.

Furthers approximated as,

Dβ
t Z(xi, t j)≈ Dβ

N
Z

j
i =

1
Γ(1−β)

j−1∑
k=0

Zk+1
i −Zk

i

τ

∫ tk+1

s=tk

(t j − s)−βds

= 1
τβΓ(2−β)

j−1∑
k=0

(Zk+1
i −Zk

i )d j−k,

where dk = k1−β− (k−1)1−β, k ≥ 1.
Equation (1.1) reduces as

Dβ

N
Z(xi, t j)− p(xi, t j)δ2

xZ(xi, t j)− q(xi, t j)D0
xZ(xi, t j)+λ

∫ t j

0
K(xi, t j −ξ)Z(xi,ξ)dξ

= (1)R j
i +(2) R j

i +(3) R j
i + f (xi, t j), (4.1)
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for 1 ≤ i ≤ M− 1, 1 ≤ j ≤ N where Z(x0, t j) = ψ1(t j), Z(xM , t j) = ψ2(t j) for 0 < j ≤ N and
Z(xi, t0)=φ(xi) for 0≤ i ≤M. Here

(1)R j
i = (Dα

N
−Dα

t )Z(xi, t j),

(2)R j
i = p(xi, t j)

(
∂2

∂x2 −δ2
x

)
Z(xi, t j),

(3)R j
i = q(xi, t j)

(
∂
∂x −D0

x

)
Z(xi, t j).


(4.2)

are the remainder terms.
The composite approximation of the trapezoidal shape, which is provided by, is used to

approximate the integral term as follows,∫ t j

0
K(xi, t j −ξ)Z(xi,ξ)dξ

=
j−1∑
k=0

∫ tk+1

tk

K(xi, t j −ξ)Z(xi,ξ)dξ

= λτ

2

j−1∑
k=0

[K(xi, t j − tk+1)Z(xi, tk+1)+K(xi, t j − tk)Z(xi, tk)]+(4) R j
i , (4.3)

where

(4)R j
i =λ

j−1∑
k=0

∫ tk+1

tk

(tk+1/2 −ξ)
d
dξ

[K(xi, t j −ξ)Z(xi,ξ)]dξ. (4.4)

Therefore, using equation (4.3) in equation (4.1), we get

Dβ

N
Z(xi, t j)− p(xi, t j) ·δ2

xZ(xi, t j)− q(xi, t j)D0
xZ(xi, t j)

+λτ
2

j−1∑
k=0

[K(xi, t j − tk+1)Z(xi, tk+1)

+K(xi, t j − tk)Z(xi, tk)]= R j
i + f (xi, t j), for 1≤ i ≤M−1, 1≤ j ≤N,

Z(x0, t j)=ψ1(t j) and Z(M, t j)=ψ2(t j), 0< j ≤N,
Z(xi, t0)=φ(xi), 0≤ i ≤M.

(4.5)

The remainder term R j
i is defined as below,

R j
i = (1)R j

i +(2) R j
i +(3) R j

i −(4) R j
i

= (Dβ

N
−Dβ

t )Z(xi, t j)+ p(xi, t j)
(
∂2

∂x2 −δ2
x

)
Z(xi, t j)+ q(xi, t j)

(
∂

∂x
−D0

x

)
Z(xi, t j)

−λ
j−1∑
k=0

∫ tk+1

tk

(tk+1/2 −ξ)
d
dξ

[K(xi, t j −ξ)Z(xi,ξ)]dξ. (4.6)

Now neglecting R j
i then we can write the equation (4.5) in discrete form as below,

Dα
N
Z

j
i − p(xi, t j) ·δ2

xZ
j
i − q(xi, t j)D0

xZ
j
i

+λτ
2

j−1∑
k=0

[K(xi, t j − tk+1)Zk+1
i +K(xi, t j − tk)Zk

i ]= f (xi, t j),

Z
j
0 =ψ1(t j) and Z

j
M =ψ2(t j), 0< j ≤N,

Z0
i =φ(xi), 0≤ i ≤M.

(4.7)
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Now using the values of D0
xZ(xi, t j), δ2

xZ(xi, t j) and Dβ
t Z(xi, t j) in equation (4.7) we get,

1
τβΓ(2−β)

j−1∑
k=0

(Zk+1
i −Zk

i )di−k − p(x,t)
h2 (Z j

i−1 −2Z j
i +Z

j
i+1)

− q(x,t)
h (Z j

i+1 −Z
j
i )+ λτ

2

j−1∑
k=0

[K(xi, t j − tk+1)Zk+1
i +K(xi, t j − tk)Zk

i ]= f (xi, t j).
(4.8)

Equation (4.8) reduces as

(
− p(x,t)

h2

)
Z

j
i−1 +

(
d1

τβΓ(2−β) + 2a
h2 + q(x,t)

h + λτ
2 K(xi,0)

)
Z

j
i +

(
− p(x,t)

h2 − q(x,t)
h

)
Z

j
i+1

= f (xi, t j)+ d1
τβΓ(2−β)Z

j−1
i − 1

τβΓ(2−β)

j−2∑
k=0

(Zk+1
i −Zk

i )d j−k

−λτ
2 (K(xi, t j − t j−1))Z j−1

i − λτ
2

j−2∑
k=0

(K(xi, t j − tk+1)Zk+1
i +K(xi, t j − tk)Zk

i ).

(4.9)

Equation (4.9) reduces as
A iZ

j
i−1 +BiZ

j
i +CiZ

j
i+1 = D(i;0,1,2,3, . . . j−1), for 1≤ i ≤M−1, 1≤ j ≤N,

Z
j
0 =ψ1(t j) and Z

j
M

=ψ2(t j), for all 0< j ≤N,
Z0

i =φ(xi), for all 0≤ i ≤M.
(4.10)

For each j = 1,2,3, . . .N the coefficients A i , Bi , Ci and D (i;0,1,2,3, . . . j−1) are defined by

A i =
(
− p(x,t)

h2

)
,

Bi =
(

d1
τβΓ(2−β) +

2p(x,t)
h2 + q(x,t)

h + λτ
2 K(xi,0)

)
,

Ci =
(
− p(x,t)

h2 − q(x,t)
h

)
,

D(i;0,1,2,3, . . . j−1)= f (xi, t j)+ d1
τβΓ(2−β)Z

j−1
i − 1

τβΓ(2−β)

j−2∑
k=0

(Zk+1
i −Zk

i )d j−k

−λτ
2 (K(xi, t j − t j−1))Z j−1

i − λτ
2

j−2∑
k=0

(K(xi, t j − tk+1)Zk+1
i

+K(xi, t j − tk)Zk
i ),

(4.11)

for i = 0,1,2,3, . . .M−1.
At any time label, there are M−1 unknowns, Z j

1,Z j
2,Z j

3,Z j
4, . . .Z j

M−1 and M−1 number of
equations are written as

1 ·Z j
0 =Z

j
0,

A1Z
j
0 +B1Z

j
1 +C1Z

j
2 = D(1;0,1,2,3 . . . j−1),

0 ·Z j
0 + A2Z

j
1 +B2Z

j
2 +C2Z

j
3 = D(2;0,1,2,3 . . . j−1),

0 ·Z j
0 +0.Z j

1 + A3Z
j
2 +B3Z

j
3 +C3Z

j
4 = D(3;0,1,2,3 . . . j−1),

...
AM−1Z

j
M−2 +BM−1Z

j
M−1 +CM−1Z

j
M

= D(M−1;0,1,2,3 . . . j−1),

0 ·Z j
0 +0 ·Z j

1 +0 ·Z j
2 +0 ·Z j

3 + . . .+Z
j
M

=Z
j
M

.

(4.12)
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We can write the aforementioned linear system in matrix form as follows:



1 0 0 0 0 . . . 0 0 0 0
0 A1 B1 C1 0 . . . 0 0 0
0 0 A2 B2 C2 . . . 0 0 0
0 0 0 A3 B3 C3 . . . 0 0
...

...
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . 0 AM−1 BM−1 CM−1

. . . . . . . . . . . . . . . 0 0 0 1





Z
j
0

Z
j
1

Z
j
2

Z
j
3
...

]Z j
M−1

Z
j
M


=



Z
j
0

D(1;0,1,2,3 . . . j−1)
D(2;0,1,2,3 . . . j−1)
D(3;0,1,2,3 . . . j−1)

...
D(M−1;0,1,2,3 . . . j−1)

Z
j
M


.

For σ= 2,3, . . .M−1, we define the coefficient of the above system as follows:

A(σ,σ−1)=
(
− p

h2

)
,

A(σ,σ)=
(

d1
τβΓ(2−β) +

2p
h2 + q

h + λτ
2 K(xi,0)

)
,

A(σ,σ+1)=
(
− p

h2 − q
h

)
,

b(σ,1)= D(i;0,1,2,3, . . . j−1)

= f (xi, t j)+ d1
τβΓ(2−β)Z

j−1
i − 1

τβΓ(2−β)

j−2∑
k=0

(Zk+1
i −Zk

i )d j−k

−λτ
2 (K(xi, t j − t j−1))Z j−1

i − λτ
2

j−2∑
k=0

(K(xi, t j − tk+1)Zk+1
i

+K(xi, t j − tk)Zk
i ).

(4.13)

5. Convergence Analysis
In this section, we establish the truncation error estimations for temporal derivative
approximation Dβ

N , second order spatial derivative approximation δ2
x and the trapezoidal

approximation for the integral component of the equation. The stability property has then been
used to derive the error bounds for the computed solution Z

j
i at each uniform mesh point (xi, t j).

Lemma 5.1. Suppose that the solution to (1.1) satisfies the condition
∣∣∣∂k1Z
∂xk1

∣∣∣≤ C for k1 = 0,1,2,3,4

and
∣∣∣∂k2Z
∂tk2

∣∣∣≤ C(1+ tβ−k2) respectively for k2 = 0,1,2. Hence, we get the following truncation error

bound for each (xi, t j) ∈ D̄1

∥(1)R j
i∥ ≤ C ·N−min(2−β,β+1). (5.1)

Proof. The proof of this lemma can be found in [13].

Lemma 5.2. The following truncation error bound is satisfied by the discrete operator δx2

∥(2)R j
i∥ ≤ Ch2. (5.2)

Proof. Applying Taylor’s series expansion, we can easily show that∥∥∥∥p(xi, t j)
( ∂2

∂x2 −δ2
x

)
Z(xi, t j)

∥∥∥∥≤ Ch2, for all (xi, t j) ∈ D̄1. (5.3)

Therefore, observing p(xi, t j) is continuous in given domain, we get the required bound.
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Lemma 5.3. The discrete operator D0
x satisfies the following truncation error bound

∥(3)R j
i∥ ≤ Ch. (5.4)

Proof. Since q(xi, t j) be continuous and bounded in the given domain. Applying Taylor’s series
expansion, we can easily show that∥∥∥∥q(xi, t j)

(
∂

∂x
−D0

x

)
Z(xi, t j)

∥∥∥∥≤ Ch, for all (xi, t j) ∈ D̄1. (5.5)

Lemma 5.4. For each i = 0,1,2,3,4, . . . M and j = 0,1,2,3, . . . N the remainder term (4)R j
i satisfies

the following inequality

∥(4)R j
i∥ ≤ CN−1. (5.6)

Proof.

∥(4)R j
i∥ =

∥∥∥∥λ j−1∑
k=0

∫ tk+1

tk

(tk+1/2 −ξ)
d
dξ

[K(xi, t j −ξ)Z(xi,ξ)]dξ
∥∥∥∥

≤λ
j−1∑
k=0

∫ tk+1

tk

(tk+1/2 −ξ)
∥∥∥∥ d

dξ
[K(xi, t j −ξ)Z(xi,ξ)]

∥∥∥∥dξ

≤λ
j−1∑
k=0

∫ tk+1

tk

(tk+1/2 −ξ)
∥∥∥∥[

− ∂

∂t
K(xi, t j −ξ)Z(xi,ξ)+K(xi, t j −ξ) · ∂Z

∂ξ
(xi,ξ)

]∥∥∥∥dξ

≤ Cτ
∫ t j

0

(
1+ ∂Z

∂ξ
(xi,ξ)

)
dξ≤ CN−1. (5.7)

Let ∥e j
i∥ = ∥Z(xi, t j)−Z

j
i∥ be the point-wise error at the point (xi, t j) ∈ D̄1. Now subtracting of

equation (4.7) from equation (4.5), we have obtained the following error equation

Dβ

N
e j

i − p(xi, t j) ·δ2
xe j

i − q(xi, t j)D0
xe j

i

+λτ
2

j−1∑
k=0

[K(xi, t j − tk+1)ek+1
i +K(xi, t j − tk)ek

i ]= R j
i ,

e j
0 = 0, e j

M = 0, for all 0< j ≤N,
e0

i = 0, for all 0≤ i ≤M.

(5.8)

The term R j
i is the remainder term which is defined in equation (4.6).

Lemma 5.5. For each uniform mesh (xi, t j) ∈ D̄1 the solution of (4.7) satisfies

∥Z(xi, t j)−Z
j
i∥ ≤ τβΓ(2−β)

j∑
k=1

θ j−k∥Rk
i ∥, (5.9)

where, the stability multipliers θm ’s are defined by θ0 = 0, θm = ∑m
k=1(dk − dk+1)θm−k for

m = 1,2,3, . . . and R j
i stands for

R j
i = (1)R j

i +(2) R j
i +(3) R j

i −(4) R j
i

= (Dβ

N
−Dβ

t )Z(xi, t j)+ p(xi, t j)
( ∂2

∂x2 −δ2
x

)
Z(xi, t j)+ q(xi, t j)

( ∂
∂x

−D0
x

)
Z(xi, t j)

−λ
j−1∑
k=0

∫ tk+1

tk

(tk+1/2 −ξ)
d
dξ

[K(xi, t j −ξ)Z(xi,ξ)]dξ. (5.10)
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Proof. Proof can be found in [27].

Theorem 5.6. If {Z(xi, t j)}
M,N
i=0, j=0 and {Z j

i }
M,N
i=0, j=0 be exact and approximate solution at each

uniform mesh (xi, t j) of equation (1.1) obtained using the scheme (4.7) then for each uniform
mesh point (xi, t j) ∈ D̄1, the error bounds are estimated as follows:

∥e j
i∥ ≤ C[τtβ−1

n +τ+h2]. (5.11)

Proof. Details of the proof can be found in [27].

6. Numerical Examples and Graphical Discussion
In this section, we consider three test problems in order to validate the theoretical estimations
established in the previous sections.

Example 6.1. Consider the following test problem
∂βZ
∂tβ − p(x, t)∂

2Z
∂x2 − q(x, t)∂Z

∂x +λ∫ t
0 K(x, t− s)Z(x, s)ds = f (x, t), for (x, t) ∈ [0,1]× [0,1],

Z(x,0)= 0, for all x ∈ [0,1],
Z(0, t)= t+ tβ, Z(1, t)= 0, for all t ∈ (0,1],

(6.1)

where the kernel function is defined as K(x, t− s)= x(t− s), p(x, t)= (1+ x2+ t2), q(x, t)= (1+ x2).
Considering the following is the source function f (x, t),

f (x, t)= (1− x2)
(

t1−β

Γ(2−β)
+Γ(1+β)

)
+2p(x, t)(t+ tβ)

+2q(x, t)x(t+ tβ)+λx(1− x2)
(

t6

6
+ t2+β

(β+1)(β+2)

)
, (6.2)

then the problem considered in Example 6.1 has the exact solution that satisfies,

Z(x, t)= (1− x2)(t+ tβ).

Let ∆EM,N =max(xi ,t j)∈D̄1
|Z(xi, t j)−Z

j
i | be the calculated inaccuracy at each mesh points (xi, t j)

and ∆PM,N = log2

(
∆EM,N
∆E2M,2N

)
be the convergence rate.

Table 1. Error, ∆EM,N and rate of convergence, ∆PM,N for Example 6.1

β M(= N)= 64 M(= N)= 28 M(= N)= 256 M(= N)= 512 M(= N)= 1024

0.2 0.0102 0.0096 0.0091 0.0088 0.0085
0.0873 0.0617 0.0531 0.5225

0.4 0.0118 0.0106 0.0094 0.0082 0.0071
0.1550 0.1705 0.1940 0.2200

0.6 0.0083 0.0065 0.0049 0.0036 0.0026
0.3468 0.3988 0.4469 0.4862

0.8 0.0034 0.0023 0.0014 0.0009 0.0005
0.6050 0.6670 0.6780 0.7068

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 463–482, 2024



A Novel Numerical Scheme for Time-Fractional Partial Integro . . . : A. Kumar and S. Gowrisankar 475

Table 2. Comparison of solutions between the exact and FDM for Example 6.1

(x, t) β= 0.4 β= 0.8
Exact FDM Exact FDM

(0.9,0.1) 0.0944 0.0935 0.0490 0.0483
(0.7,0.3) 0.4677 0.4652 0.3474 0.3455
(0.5,0.5) 0.9433 0.9395 0.8057 0.8025
(0.3,0.7) 1.4255 1.4220 1.3207 1.3173
(0.1,0.9) 1.8398 1.8382 1.8006 1.7991
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Figure 1. (a) Approximate solution for Example 6.1 with M = N = 32 and β= 0.4; (b) Exact solution for
M = N = 32 and β= 0.4; (c) Error between the approximate and exact solution vs x for M = N = 512 and
for different values of β for Example 6.1

The calculated error and order of convergence are presented in Table 1 and Table 2.
Figure 1(a) represents surface of approximate solution in the x− t plane with M = N = 32
and β= 0.4 for Example 6.1. Figure 1(b) represents the exact solution for various values of x
and t with M = N = 32 and β= 0.4. Whereas Figure 1(c) plots error versus x for various values
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of β= {0.2,0.4,0.6,0.8} with M = N = 512. From the above plot we can see that initially error of
solution is strictly increasing to attains maximum value and then strictly decreasing to attains
minimum value. Finally, error at end points be zero. Also the associated error is decreasing as
increasing values of β.

Example 6.2. Consider the following test problem
∂βZ
∂tβ − p(x, t)∂

2Z
∂x2 − q(x, t)∂Z

∂x +λ∫ t
0 K(x, t− s)Z(x, s)ds = f (x, t), for all (x, t) ∈ D̄,

Z(x,0)= 0, for all x ∈ [0,1],
Z(0, t)= tβ, Z(1, t)= etβ, for all t ∈ (0,1],

(6.3)

where K(x, t− s)= ex(t−s), p(x, t)= (1+ x2 + t2), q(x, t)= (1+ x2).
Here, we consider the source function f to be

f (x, t)=Γ(1+β) · ex − (p(x, t)+ q(x, t))tβex +
[
λt1+β× e(1+t)x

(β+1)

]
. (6.4)

For this selecting of the source function f (x, t), the exact solution of Example 6.2 is given by

Z(x, t)= tβex.

The error and order of convergence are calculated as given for Example 6.2 and are provided
in Table 3 and Table 4.

Table 3. Error, ∆EM,N and rate of convergence, ∆PM,N for Example 6.2

β M(= N)= 64 M(= N)= 128 M(= N)= 256 M(= N)= 512 M(= N)= 1024

0.2 0.0336 0.0330 0.0328 0.0326 0.0326
0.0232 0.0114 0.0055 0.0027 0

0.4 0.0302 0.0298 0.0296 0.0295 0.0294
0.0208 0.0104 0.0051 0.0025 0

0.6 0.0275 0.0271 0.0269 0.0268 0.0267
0.0212 0.0108 0.0054 0.0027 0

0.8 0.0251 0.0247 0.0245 0.0244 0.0243
0.0226 0.0116 0.0059 0.0030 0

Table 4. Comparison of solutions between the exact value and FDM for Example 6.2

(x, t) β= 0.4 β= 0.8
Exact FDM Exact FDM

(0.9,0.1) 0.9776 0.9768 0.3894 0.3880
(0.7,0.3) 1.2439 1.2467 0.7685 0.7694
(0.5,0.5) 1.2495 1.2574 0.9469 0.9515
(0.3,0.7) 1.1705 1.1816 1.0148 1.0225
(0.1,0.9) 1.0596 1.0662 1.0159 1.0210
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Figure 2. (a) Approximate solution vs t and x plot for M = N = 32 and β= 0.4; (b) Exact solution vs t
and x plot for M = N = 32 and β= 0.4; (c) Error of solution vs x plot for M = N = 512 and for different
values β

Figure 2(a) represents curved surface of approximate solution versus x, t of Example 6.2 with
M = N = 32 and β= 0.4. Figure 2(b); for M = N = 32 and β= 0.4 represents curved surface of the
exact solution versus x, t of Example 6.2. Figure 2(c); for M = N = 512 and β= {0.2,0.4,0.6,0.8}
represents error versus x of Example 6.2.

Example 6.3. Consider the following test problem
∂βZ
∂tβ − p(x, t)∂

2Z
∂x2 − q(x, t)∂Z

∂x +λ∫ t
0 K(x, t− s)Z(x, s)ds = f (x, t), for all (x, t) ∈ [0,1]× [0,1],

Z(x,0)= 0, for all x ∈ [0,1],
Z(0, t)= 0, Z(1, t)= tβ cos(1), for all t ∈ (0,1],

(6.5)

where K(x, t− s)= xt, p(x, t)= (1+ x2 + t2) and q(x, t)= (1+ x2).
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Here we consider,

f (x, t)=Γ(β+1)sin
(
x+ πx

2

)
+ p(x, t)

(
1+ π

2

)2

tβ sin
(
x+ πx

2

)
− q(x, t)tβ

(
1+ π

2

)
cos

(
x+ π · x

2

)
+λ

(
xtsin

(
x+ πx

2

) tβ+1

(β+1)

)
. (6.6)

For this selecting value of f (x, t), the exact solution of Example 6.3 is provided by

Z(x, t)= tβ sin
(
x+ πx

2

)
. (6.7)

Table 5. Error, ∆EM,N and rate of convergence, ∆PM,N for Example 6.3

β M(= N)= 64 M(= N)= 128 M(= N)= 256 M(= N)= 512 M(= N)= 1024
0.2 0.0122 0.0109 0.0102 0.0097 0.0093

0.1619 0.0999 0.0705 0.0603 0
0.4 0.0132 0.0116 0.0103 0.0089 0.0076

0.1828 0.1828 0.1999 0.2246 0
0.6 0.0091 0.0071 0.0053 0.0039 0.0028

0.3624 0.4074 0.4524 0.4923 0
0.8 0.0037 0.0024 0.0015 0.0010 0.0006

0.6184 0.6785 0.6805 0.7203 0

Table 6. Comparison of solutions between the exact value and FDM for Example 6.3

(x, t) β= 0.4 β= 0.8
Exact FDM Exact FDM

(0.9,0.1) 0.2926 0.2908 0.1165 0.1155
(0.7,0.3) 0.6011 0.5964 0.3714 0.3685
(0.5,0.5) 0.7272 0.7210 0.5511 0.5464
(0.3,0.7) 0.6039 0.5989 0.5236 0.5192
(0.1,0.9) 0.2436 0.2418 0.2336 0.2318
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Figure 3. (a) Approximate solution vs t and x plot for M = N = 32 and β= 0.4; (b) Exact solution vs t
and x plot for M = N = 32 and β= 0.4; (c) Error of solution vs x plot for M = N = 128 and for different
values β

Figure 3(a), for M = N = 32 and β= 0.4 represents curved surface of approximate solution
versus x, t of Example 6.3. Figure 3(b), for M = N = 32 and β= 0.4 represents curved surface of
the exact solution versus x, t, Example 6.3. Figure 3(c) for M = N = 128 and β= {0.2,0.4,0.6,0.8}
represents error versus x of Example 6.3. From plot (c) initially error of solution is strictly
increasing to attains maximum value and then strictly decreasing to attains minimum value.
Finally, error at the end points be zero. Error is decreasing as increasing values of β. Figure 3(d),
for M = N = 256 and β= {0.2,0.4,0.6,0.8} represents error versus x of Example 6.3. From plot
(d) initially error of solution is strictly increasing to attains maximum value and then strictly
decreasing to attains minimum value. Finally, error at the end points be zero.

7. Conclusions
In this work, we developed numerical methods for time-fractional integro-differential equations.
In order to compute the approximate solutions for highly non-linear or linear forms of various
time-fractional integro-differential models, we apply the extended and more generalized finite
difference methods. This article expands three distinct examples of the linear time-fractional
form of integro-differential models. Numerical experiments are carried out to confirm the
theoretical estimations.
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