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Abstract. The Benjamin-Bona-Mahony (BBM) equation is a nonlinear partial differential equation
that describes the propagation of long waves in a shallow water channel. In this work, we present
a comprehensive solution for the BBM equation using the Riccati-Bernoulli sub-ODE method.
The method involves transforming the BBM equation into a Riccati equation, which is then further
transformed into a Bernoulli equation. The Bernoulli equation is then solved analytically, and
the solution is used to obtain the solution for the original BBM equation. Our results show that
the Riccati-Bernoulli sub-ODE method provides an efficient and accurate solution for the BBM
equation. The method can be extended to solve other nonlinear partial differential equations (NPDEs),
making it a valuable tool for researchers in various fields.
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1. Introduction
The study of NLPDEs in mathematics and physics has resulted in the development of theories,
applications, and concepts that characterize a wide range of physical systems (Agrawal [1],
and Whitham [23]). Mathematicians have struggled to find the existence and uniqueness
solutions to many complex issues employed in numerous fields of study, including applied science,
engineering, chemistry, physics, astronomy, and biological (Hasegawa et al. [5]). Several studies
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have been conducted to investigate various techniques for solving NLPDEs (Ibrahim et al. [15],
Inc et al. [16], and Sulaiman et al. [21]). NLPDE approaches and solutions are widely utilized in
Continuum mechanics, fluid dynamics, Chaos theory for Dynamical systems, nonlinear optics,
quantum theory, and other fields (Fang et al. [4], Ibrahim [8], Kudryashov [18], 1). The NLPDE
theories and concepts can be expanded to investigate the commutative of linear time varying
systems (LTVSs) (Ibrahim [6,7], Ibrahim and Rababah [11], Ibrahim and Köksal [12–14]).

A nonlinear partial differential equation that represents the propagation of long waves
in shallow water is the (BBM) equation. This equation is widely used in fluid dynamics,
oceanography, and other branches of applied mathematics. The BBM equation has a complex
solution structure that can display phenomena like as soliton production, wave breaking, and
turbulence. Finding accurate and effective analytic methods to solve the BBM equation is one
of the obstacles in understanding it. To solve the BBM problem, several scholars used several
approach to solve the BBM equation (Ali et al. [2], Elmandouh and Fadhal [3], Shakeel et al. [20],
Wang [22], and Xie and Li [24]).

The goal of this work is to investigate the optical traveling wave solutions of the Benjamin-
Bona-Mahony (BBM) equation using the Riccati-Bernoulli sub-ODE technique. Some figures
are used to demonstrate and back up our findings.

The third-order (1+1)-dimensional BBM equations is provided by,

ϑt =−ϑx −αϑxϑ
2 −βϑxxt, (1)

where α and β are nonzero real parameters. The Riccati-Bernoulli sub-ODE method was a
powerful and efficient approach for solving nonlinear differential equations. This method has
since been used to solve a wide variety of nonlinear differential equations, including partial
differential equations. The method has been demonstrated to be efficient and accurate in
tackling a wide range of nonlinear problems. The Riccati-Bernoulli sub-ODE method has
recently gained popularity for solving NLPDs. The original equation is transformed into a
system of first-order differential equations, and then the Riccati-Bernoulli sub-ODE method
is used to solve it. Using the RB-sub equation method, several ways have been used to obtain
soliton solutions for various NLPDEs (Ibrahim [9,10], Karaman [17], Ozdemir et al. [19], and
Yang et al. [25]).

In this paper, we employ the approach in a similar way to examine the traveling wave
solutions to the third-order BBM equation. So yet, the approach has not been applied to the
proposed novel third-order BBM NPDE. The paper is planned as follows: The approach was
introduced in Section 2. Section 3 has the application and figures, Section 4 describe the results
and 5 concludes the paper.

2. Description of RB Sub-ODE Method
We present the RB sub-equation approach in this section. Assume we have an NLPDE,

P (ϑ,ϑt,ϑx,ϑtt,ϑxx,ϑtx, . . .)= 0, (2)

P denotes a polynomial. The RB sub-equation approach is divided into three stages.
1L. Akinyemi, U. Akpan, P. Veeresha, H. Rezazadeh and M. Inc, Computational techniques to study the dynamics

of generalized unstable nonlinear Schrödinger equation, Journal of Ocean Engineering and Science, In Press
(2022), DOI: 10.1016/j.joes.2022.02.011.
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Step 1: We take a look at the following traveling wave transformation,

ϑ(ξ)=ϑ(x, t), ξ= K(x±vt), (3)

which resulted in the following ODE

P(ϑ,ϑ′,ϑ′′, . . .)= 0, (4)

where ϑ′(ξ)= dϑ
dξ .

Step 2: Let eq. (4) be the solution to the RB equation,

ϑ′ = bϑ+aϑ2−m + cϑm, (5)

where a,b, c, and m are random constants.
Differentiating eq. (5) results in

ϑ′′ =ϑ−1−2m(aϑ2 + cϑ2m +bϑ1+m)(−a(−2+m)ϑ2 + cmϑ2m +bϑ1+m), (6)

ϑ′′′ =ϑ−2(1+m)(bu+aϑ2−m + cϑm)(a2(−2+m)(−3+2m)ϑ4 + c2m(−1+2m)ϑ4m

+ab(−3+m)(−2+m)ϑ3+m + (b2 +2ac)ϑ2+2m +bcm(1+m)ϑ1+3m), (7)

and so on.

Take note that the solutions to eq. (5) results in:

Case 1. As m = 1, eq. (5) become

ϑ(ξ)= Je(b+a+c)ξ. (8)

Case 2. As m ̸= 1, b = 0 and c = 0, eq. (5) become

ϑ(ξ)= (a(m−1)(ξ+ J))
1

m−1 . (9)

Case 3 . As m ̸= 1, b ̸= 0 and c = 0, eq. (5) become

ϑ(ξ)=
(
Je(b(m−1)ξ) − a

b

) 1
m−1 . (10)

Case 4. As m ̸= 1, a ̸= 0 and b2 −4ac < 0, the results of eq. (5) becomes

ϑ(ξ)=
(
− b

2a
+
p

4ac−b2

2a
tan

[
(1−m)

p
4ac−b2

2
(ξ+ J)

]) 1
1−m

(11)

and

ϑ(ξ)=
(
− b

2a
−
p

4ac−b2

2a
cot

[
(1−m)

p
4ac−b2

2
(ξ+ J)

]) 1
1−m

. (12)

Case 5. As m ̸= 1,a ̸= 0 and b2 −4ac > 0, the results of eq. (5) becomes

ϑ(ξ)=
(
− b

2a
−
p

b2 −4ac
2a

tanh

[
(1−m)

p
b2 −4ac

2
(ξ+ J)

]) 1
1−m

(13)

and

ϑ(ξ)=
(
− b

2a
−
p

b2 −4ac
2a

coth

[
(1−m)

p
b2 −4ac

2
(ξ+ J)

]) 1
1−m

. (14)
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Case 6. As m ̸= 1, a ̸= 0 and b2 −4ac = 0, the results of eq. (5) become

ϑ(ξ)=
(

1
a(m−1)(ξ+ J)

− b
2a

) 1
1−m

, (15)

where J is a constant.

Step 3. When the derivatives of ϑ are entered into eq. (4), the equation in terms of ϑ is obtained.
The solution is found by collecting terms that belong together and solving for the unknown
constants of eq. (2) (see Ibrahim [10]).

2.1 Bäcklund Transformation
Supposed ϑn(ξ) and ϑn−1(ξ) are solutions of eq. (2), then

dϑn(ξ)
dξ

= dϑn(ξ)
dϑn−1(ξ)ξ

dϑn−1(ξ)
dξ

= dϑn(ξ)
dϑn−1ξ

(aϑ2−m
n−1 +bϑn−1 + cϑm

n−1), (16)

namely,
dϑn(ξ)

aϑ2−m
n +bϑn + cϑm

n
= dϑn−1(ξ)

aϑ2−m
n−1 +bϑn−1 + cϑm

n−1
. (17)

Integrating eq. (17) with respect to ξ leads

ϑn(ξ)=
( −cA1 +aA2(ϑn−1(ξ))1−m

bA1 +aA2 +aA1(ϑn−1(ξ))1−m

) 1
1−m

, (18)

where A1 and A2 are random constants. The solution to eq. (2) can be derived using eq. (18),
and the procedure is known as a Bäcklund transformation [25].

3. Results
To solve the third-order NLPDE provided in eq. (1), we must use the traveling wave
transformation,

ϑ(x, t)=ϑ(ξ), ξ= K(x+vt), (19)

by plugging into eq. (1), We arrived at the following equation:

Kvϑ′+Kϑ′+Kαϑ2ϑ′+K3vβϑ(3) = 0 . (20)

Plugging eqs. (5), (6), (7) as well as its derivative into eq. (20), setting m = 0 and collecting all
the coefficients of U i(ξ) (for i = 0,1,2,3,4), we get the following:

ϑ0(ξ) : cK + cKv+b2cK3vβ+2ac2K3vβ−0,

ϑ1(ξ) : bK +bKv+b3K3vβ+8abcK3vβ= 0,

ϑ2(ξ) : aK +aKv+ cKα+7ab2K3vβ+8a2cK3vβ= 0,

ϑ3(ξ) : bKα+12a2bK3vβ= 0,

ϑ4(ξ) : aKα+6a3K3vβ= 0.


(21)

Solving the algebraic equation system of eq. (21) results in

a = cK2αβ+
p

6K2αβ+c2K4α2β2

6K2β
,

b = 0,

v = 1
3 (−3+6acK2β−2c2K2αβ).

 (22)
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We find the solutions of eq. (1) by combining the solutions of eq. (22), eqs. (8)-(15) and (19) as:
The periodic singular is as follows:

ϑ±
1 (x, t)=

p
6c tan

[√
c(cK2αβ+

p
K2αβ(6+c2K2αβ))

K2β
(3J+K(3x+t(−3−c2K2αβ+c

p
K2αβ(6+c2K2αβ))))

3
p

6

]
√

c(cK2αβ+
p

K2αβ(6+c2K2αβ))
K2β

, (23)

ϑ±
2 (x, t)=−

p
6ccot

[√
c(cK2αβ+

p
K2αβ(6+c2K2αβ))

K2β
(3J+K(3x+t(−3−c2K2αβ+c

p
K2αβ(6+c2K2αβ))))

3
p

6

]
√

c(cK2αβ+
p

K2αβ(6+c2K2αβ))
K2β

. (24)

The dark optical soliton is as follow:

ϑ±
3 (x, t)=

p
6ccoth

[√
− c(cK2αβ+

p
K2αβ(6+c2K2αβ))

K2β
(3J+K(3x+t(−3−c2K2αβ+c

p
K2αβ(6+c2K2αβ))))

3
p

6

]
√
− c(cK2αβ+

p
K2αβ(6+c2K2αβ))
K2β

, (25)

ϑ±
4 (x, t)=

p
6c tanh

[√
− c(cK2αβ+

p
K2αβ(6+c2K2αβ))

K2β
(3J+K(3x+t(−3−c2K2αβ+c

p
K2αβ(6+c2K2αβ))))

3
p

6

]
√
− c(cK2αβ+

p
K2αβ(6+c2K2αβ))
K2β

, (26)

and the singular soliton is as follow:

ϑ±
5 (x, t)= 18K2β

(cK2αβ+
√

K2αβ(6+ c2K2αβ))(3J+K(3x+ t(−3− c2K2αβ+ c
√

K2αβ(6+ c2K2αβ))))
.

(27)

4. Interpretation and Description of the Results
The purpose of this section is to discuss the behavior of some soliton and to understand some of
the results gained from the previous section and simulations.
Figure 1 demonstrate the periodic singular wave solution for ϑ1(x, t) of eq. (23). We consider
the following parameters in a similar manner: β=−1.35; α=−2.3; c =−2.2; γ=−2.4; J = 5.55;
K =−3.8.
Figure 2 demonstrate the periodic singular wave solution for ϑ2(x, t) of eq. (22). We consider
the following parameters in a similar manner: β=−4.4; α= 2.8; c = 8.3; γ=−0.8; J =−1.05;
K = 4.8.
Figure 3 demonstrate the dark dark soliton solution for ϑ3(x, t) of eq. (25). We consider the
following parameters in a similar manner: β= 7.25; α= 1.85; c = 5.85; γ= 6.9; J = 6.5; K = 2.25.
Figure 4 demonstrate the dark dark soliton solution for ϑ4(x, t) of eq. (26). We consider the
following parameters in a similar manner: β=−3.25; α=−3.25; c = 0.75; γ= 2.45; J =−3.25;
K =−1.75.
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Figure 1. Plot of 3D, 2D, density and contour of (23)

Figure 2. Plot of 3D, 2D, density and contour of (24)

Figure 3. Plot of 3D, 2D, density and contour of (25)

Figure 4. Plot of 3D, 2D, density and contour of (26)

Figure 5. Plot of 3D, 2D, density and contour of (27)
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Figure 5 demonstrate the singular wave solution for ϑ5(x, t) of eq. (27). We consider the following
parameters in a similar manner: β=−2.8; α=−4.4; c = 4.7; γ= 6.8; J =−6.65; K =−4.2.

5. Concluding Remarks
The BBM equation is a NLPDE that describes the propagation of long waves in shallow water.
The solution of the BBM equation using analytic and precise methods has been a focus of recent
research. The tanh approach and the Hirota bilinear method are two of the most used methods
for solving the BBM equation. Several academics have also investigated the behavior of the BBM
equation under various boundary conditions. These investigations shed light on the physical
features of the BBM equation and its behavior in dispersive media. The Riccati-Bernoulli
sub-ODE method is an effective numerical method for solving NPDEs. The method has been
demonstrated to be efficient fast and accurate in estimating the solutions of numerous NPDEs
in diverse sectors of science and engineering. In this work, we applied the Riccati-Bernoulli
sub-ODE method to solved the BBM equation and this lead to several solutions, such as soliton
solutions, periodic solutions, and dark soliton solution, have also been used to find various
sorts of solutions. Our results show that the Riccati-Bernoulli sub-ODE method solves the
BBM problem in an efficient and accurate manner. The method can be used to solve additional
NPDEs, making it a useful tool for researchers in a variety of domains.
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