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1. Introduction

The notion of generalized Sasakian space forms was introduced and studied by P. Alegre et
al. [1] with several examples. A generalized Sasakian-space-form is an almost contact metric
manifold M(¢,¢,n,g) whose curvature tensor is given by

R(X,Y)Z = f1{g(Y,2)X - g(X,2)Y} + f2{g(X,pZ)pY - g(Y ,pZ)pX +28(X,pY )P Z}
+ f3nXON(2)Y —n(¥Y m(2)X + g(X,Zn(Y)¢ - g(Y, Z)n(X)¢E},

where f1, f2, fs are differentiable functions and X,Y,Z are vector fields on M. In such

case we will write the manifold as M(f1, f2, f3). This kind of manifolds appears as a natural

generalization of the Sasakian-space-forms: f; = % and f1 = f3 = %1, where ¢ denotes

constant ¢-sectional curvature. The ¢-sectional curvature of generalized Sasakian-space-forms
M(f1,f2,f3) is f1+3f2. Moreover, cosymplectic space-forms and Kenmotsu space-forms also
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consider as particular types of generalized Sasakian-space-forms. Generalized Sasakian-space-
forms have been studied by many authors. For example see [2-4,6,9,(10, /12, 14].

The notion of weakly symmetric and weakly Ricci-symmetric manifolds were introduced by
L. Tamassy and T.Q. Binh ( [18]] and [19]). These types of manifold were studied with different
structures by several authors (see [7,8,(11,/13,,15,16]). In this connection, we would mention the
works of Yadav and Suthar [20]] on generalized Sasakian-space-forms.

The paper is organized as follows: Section [2|is devoted to preliminaries on generalized
Sasakian-space-forms. In Section [3] we consider weakly symmetric generalized Sasakian-
space-forms and study the characteristic properties of locally symmetric and recurrent spaces.
Section [4| deals with the study on weakly Ricci-symmetric generalized Sasakian-space-forms.
We study the characteristic properties of locally Ricci-symmetric and locally Ricci-recurrent
spaces. Also, we show that special weakly Ricci-symmetric generalized Sasakian-space-forms
cannot be locally Ricci-symmetric.

2. Preliminaries

In almost contact metric manifold we have [5]]

PAX) = -X +n(X), $&=0, 1@ =1, n@X)=0, (2.1)
gX, &) =nX), gX,pY)=gX,Y)-nXnX), (2.2)
gpX,Y)=-g(X,¢Y), g(¢X,X)=0. (2.3)

Again, for a (2n + 1)-dimensional generalized Sasakian-space-form we have [1]

S(X,Y)=@2nf1+3f2-f3)g(X,Y)~(Bf2+(2n - DfsIn(X)n(Y), (2.4)
R(X,Y)¢ = (f1—f3)n(¥)X —n(X)Y], (2.5)
R, X)Y =(f1—-f3)lg(X,Y)¢ —n(Y)X], (2.6)
S(X,8) =2n(f1 - f3)n(X), 2.7

where R and S are the curvature tensor and the Ricci tensor of the space-form, respectively.

3. Weakly Symmetric Generalized Sasakian-Space-Forms

In this section, we study the characterizations of locally symmetric and recurrent spaces.

Definition 3.1. Generalized Sasakian space form M(f1,f2,f3) (n > 2) is called weakly
symmetric if there exists 1-forms A, B, C, D and their curvature tensor R satisfies the
condition

(VxR)Y,Z,V)=AX)R(Y,Z,V)+B(Y)R(X,Z,V)+C(Z)R(Y,X,V)
+D(V)R(Y ,Z,X)+gR(Y,Z,V), X)P, (3.1)
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Definition 3.2. A weakly symmetric generalized Sasakian space form M(f1,f2,f3) (n >2) is

said to be locally symmetric, if

VR =0.

Suppose a weakly symmetric generalized Sasakian space form M(f1, fo, f3) (n > 2) is locally

symmetric with f1 — f3 # 0. Then from and Definition 3.2} we have
AX)S(Z,V)+BR(X,Z)V)+C(Z)SX,V)+D(V)S(X,Z)+E(R(X,V)Z)=0
Replacing V by ¢ in and then using and we obtain
(f1 = f3)l(n — D{AX)n(Z) + C(Z)n(X)} +{B(X)n(Z) - B(Z)n(X) + E(X)n(Z)}
+E()g(X,Z2)1+D()S(X,Z) =0.
Putting X = Z = ¢ in (3.3), we can easily get
(n—D(f1- A +C(E) +D()]1=0
which implies that
A +C()+D)=0.
Next, plugging Z in and then using and we have
(f1 = f3)l(n — D{AX)N(V) + D(V)n(X)} +{B(X)n(V) + E(X)n(V) - E(V)n(X)
—B®gX, V) 1+C(S(X,V)=0.
Setting V = ¢ in (3.5), we get
(f1 = f3)l(n = DIAX) + D(On(X)} +{B(X) + E(X) - E(n(X)
= B(On(X)} +(n - DHCENX)] = 0.
Similarly, if we set X = ¢ in we obtain
(f1 = 3)(n = 1{AN(V)+ DV} +{En(V) - EV)} +(n — DIC(En(V)H = 0.
Replacing V by X in (8.7), we have
(f1=F3)ln = DIAON(V) + DV} +H{EON(V) - E(V )} + (n — DIC(En(V)} = 0.
Adding and and using (3-4), we have

(f1 - f)l(n — DIAX) - A(ONXD)} +{B(X) — B(On(X)} +{D(X) = D(En(X)}H = 0.

Next, putting X = ¢ in (3.3), we have
(1= f3)(n — IIC(Z) - C(ON(Z)} +{B(E)n(Z) — B(Z)}] = 0.

Replacing Z by X in above equation and then adding with equation (3.9), we get
AX)+CX)+D(X)=0.

Hence we are able to state the following;
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Theorem 3.1. If a weakly symmetric generalized Sasakian space form M(f1,fs,f3) (n >2) with
f1—f3 #0 is locally symmetric, then the sum of the associated 1-forms A, C and D is zero
everywhere.

Definition 3.3. A weakly symmetric generalized Sasakian space form M(f1,f2,f3) (n >2) is
said to recurrent if

VR=A®R.

On the other hand, let us consider a weakly symmetric generalized Sasakian space forms
M(f1,f2,f3) (n>2) with f1 — f3 #0 is recurrent, then from (3.1) and Definition [3.3| we find,

B(Y)R(X,Z,V)+C(Z)R(Y ,X,V)+D(V)R(Y ,Z,X)+g(R(Y,Z,V),X)p =0. (3.11)
Next, putting X =Y =Z =V =¢ in (3.11) and then using (2.5), we obtain
C)+D()=0.

Further proceeding as in the proof of the previous theorem and using the fact that C({) + D(¢) =0,
obviously, one can get C(X)+ D(X) =0 for any vector field X on M(f1,f2,f3), sothat C+D =0
everywhere on M. Hence we state the following result:

Theorem 3.2. If a weakly symmetric generalized Sasakian space form M(f1, fe,f3) (n > 2) with

f1— 13 #0 is recurrent, then the 1-forms C and D are in the opposite direction.

4. Weakly Ricci-Symmetric Generalized Sasakian Space Forms

In this section, we investigate characterizations of locally Ricci-symmetric and Ricci-recurrent
spaces.

Definition 4.1. A generalized Sasakian space form M(f1,f2,f3) (n > 2) called weakly Ricci-
symmetric if there exist 1-forms a, p and y and their Ricci tensor S of type (0,2) satisfies the
conditions

(VxS)Y,Z)=a(X)S(Y,Z)+ BY)S(X,Z)+y(Z)S(Y,X) (4.1)
for all vector fields X, Y and Z on M(f1,f2,f3).

Definition 4.2. A weakly Ricci-symmetric generalized Sasakian space form M(f1, f2,f3) (n>2)
is said to be locally Ricci-symmetric if

VS =0

Let us consider a weakly Ricci-symmetric generalized Sasakian space form M(f1, fo,f3)
(n > 2) with f1—f3 # 0 which is locally Ricci-symmetric. Then by virtue of (4.1) and Definition 4.2}
we have

a(X)S(Y,Z)+B(Y)SX,Z2)+y(Z)S(Y,X)=0. (4.2)
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Setting X =Y =Z =¢ in (4.2), we find

a($) + P(&) +y() = 0. (4.3)
Now taking Y =Z =¢ in and then using (2.7), we get

a(X)—a(é)n(X)=0. (4.4)
In a similar manner, we can obtain

BX) - X)) =0 (4.5)
and

y(X) —y(On(X) =0. (4.6)
Adding (4.4), and and using we obtain

a(X)+ pX)+y(X) =0, 4.7
for all X on M(f1, fe,f3). Thus we state following:

Theorem 4.1. In weakly Ricci-symmetric generalized Sasakian-space-form M(f1, fo,f3) (n>2)
with f1— fs #0 is locally Ricci-symmetric, then the sum of associated 1-forms a, B and y is zero
everywhere.

If in (4.1) the 1-form a is replaced by 2a and B and y are equal to @ then we have
(VxS)Y,Z)=2a(X)S(Y,Z)+ a(Y)S(X,Z)+ a(Z)S(Y ,X) (4.8)

where «a is a non-zero 1-form defined by a(X) = g(X,p). A manifold which satisfies (4.8) is
called a specially weakly Ricci-symmetric manifold (see [[17]]).

Suppose that M(f1, f2, f3) (n > 2) is a specially weakly Ricci-symmetric generalized Sasakian-
space-forms. If M(f1, f2,f3) is locally Ricci-symmetric, then from (4.7), we have

20(X)+a(X)+a(X) =0,

for any X on M(f1,f2,f3), that is a(X) = 0. Which is contradicts the definition. Hence
M(f1,f2,f3) can not be locally Ricci-symmetric. This gives us to state:

Theorem 4.2. Let M(f1,f2,f3) (n > 2) be a specially weakly Ricci-symmetric generalized
Sasakian-space-form with f1—f3#0. Then M(f1, fe,f3) cannot be locally Ricci-symmetric.

Definition 4.3. A weakly Ricci-symmetric generalized Sasakian space form M(f1, fo,f3) (n>2)
is said to be Ricci-recurrent if it satisfies the condition

VS=a®S.
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Suppose, weakly Ricci-symmetric generalized Sasakian space form M(f1, fo,f3) (n > 2) with
f1— 13 #0 is Ricci-recurrent, then from (4.1) and Definition 4.3, we have

BY)S(X,Z)+y(Z)S(Y,X)=0. (4.9)
Putting X =Y =Z=¢in and then using (2.7), we obtain

B+ (&) =0. (4.10)
Setting X =Y =¢ in (4.9), we get

YZ) = -p(n(Z). (4.11)
Similarly, we have

B(Z) = —y(En(Z). (4.12)
Adding the above equation with and using (4.10), we get

B(Z)+y(Z)=0,
for any vector field Z on M. So that § and y are in opposite direction. Hence we state

Theorem 4.3. If a weakly Ricci-symmetric generalized Sasakian space form M(f1,f2,[f3) (n >2)
with f1—fs #0 is locally Ricci-recurrent, then the 1-forms f and y are in opposite direction.
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