
Communications in Mathematics and Applications
Vol. 15, No. 1, pp. 191–202, 2024
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v15i1.2430

Research Article

A Novel Approximation on the Solution of Systems
of Ordinary Differential Equations
Sevket Uncu and Erkan Cimen*

Department of Mathematics, Van Yuzuncu Yil University, Van, Turkey
*Corresponding author: cimenerkan@hotmail.com

Received: September 26, 2023 Accepted: January 1, 2024

Abstract. In this paper, the initial-value problem for the system of first-order differential equations
is considered. To solve this problem, we construct a fitted difference scheme using the finite difference
method, which is based on integral identities for the quadrature formula with integral term remainder
terms. Next, we prove first-order convergence for the method in the discrete maximum norm. Although
this scheme has the same rate of convergence, it has more efficiency and accuracy compared to the
classical Euler scheme. Two test problems are solved by using the proposed method and the classical
Euler method, which confirm the theoretical findings. The numerical results obtained from here show
that the proposed method is reliable, efficient, and accurate.
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1. Introduction
Systems of Ordinary Differential Equations (SODEs) appear in widely in many scientific process
ranging from physics and engineering to medicine and biology. SODEs play a significant
role in modeling of applied sciences. Traditionally, these models occur in the mathematical
formulations of the various problems such as deep neural network, electric circuits, feedback
control systems, iodate-arsenous acid reactions, cell growth, etc. (Batiha [5], Goldberg and
Schwartz [13], Goodwine, [14], Logemann and Ryan [20], Perko [21], and Sideris [25]).

Many approaches about SODEs were proposed which are analytical or numerically solutions.
Researchers studied and improved some methods for getting exact solution except for classic
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methods such as direct integration method (Kydyraliev and Urdaletova [18]). In addition,
Adrianova [2], Grigorian [15], Ross [22], and Seiler and Seiß [24] discussed existence, uniqueness
and stability analysis for SODEs.

Although there are many analytical solution techniques, finding exact solution can not
be always possible for SODEs. Therefore, in recent years numerically methods catch on
with mathematicians and numerous numerically approaches were suggested (Lambert [19]).
For example, parallel direct method (Amodio and Trigiante [4]), differential transformation
method (Abdel-Halim Hassan [1]), variational iteration methods (Biazar and Ghazvini [6], and
Darvishi et al. [9]), Adomian decomposition method (Biazar et al. [7], and Kaya [17]), Laplace
transform-Adomian decomposition method (Dogan [10]), vectorized algorithm method (Dufera
[11]), the Monte Carlo method (Ermakov and Smilovitskiy [12]), Sawi transformation (Higazy
and Aggarwal [16]), psuedo-spectral method (Saravi et al. [23]), etc.

Motivated by the above works, we consider the following system of first order linear initial
value problem:

Lu1 ≡ u′
1(t)+a1(t)u1(t)+b1(t)u2(t)= f1(t), t ∈ I, (1.1)

Lu2 ≡ u′
2(t)+a2(t)u2(t)+b2(t)u1(t)= f2(t), t ∈ I, (1.2)

u1(0)= γ1, u2(0)= γ2, (1.3)

where I = (0,T] and ak(t) ≥αk > 0, bk(t), fk(t) are assumed to be continuous in I = [0,T] and
such that (1.1)-(1.3) has a unique solution uk(t) ∈ C1(I) satisfying the given initial conditions
and γk are real constants (k = 1,2) (more details see, Ross [22]).

The present paper aim is to present an efficient numerical approach for solving (1.1)-(1.3).
The method derives from a finite difference scheme given on a uniform mesh that is constituted
by appropriate quadrature formulas with the weight, whose remainder terms are in integral
form. This ends up with in a local truncation error including only first order derivatives of the
exact solution, which is the most important advantage of the method compared to the classical
methods such as Euler, and hence allows of analysis of the convergence.

The schedule of the present paper is as follows: In Section 2, some properties for the exact
solution of (1.1)-(1.3) and its derivative are given. The difference scheme is constructed on
uniform mesh in Section 3. In Section 4, error estimates and stability analysis are proved and
convergence is addressed. In Section 5, we formulate the difference scheme by an algorithm
and present two examples for illustrate the theoretical results provided. In the last section,
summary of the main conclusions are given.

2. The Continuous Problem
Here we give a few properties of the solutions of (1.1)-(1.3), which are needed in the next sections
for the analysis of the appropriate numerical solutions. Furthermore, for any continuous function
g(t), we use ∥g∥∞ = max

0≤t≤T
|g(t)| and C denotes a generic positive constant throughout the paper.

Lemma 2.1. Let ak, bk, fk ∈ C(I) and

α−1
1 α−1

2 ∥b1∥∞∥b2∥∞ < 1 .
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Then for the solution uk(t) of (1.1)-(1.3) the following estimates hold:

∥uk∥ ≤ C , (2.1)

∥u′
k∥ ≤ C , (2.2)

for k = 1,2.

Proof. We can rewrite eqn. (1.1):

u′
1(t)+a1(t)u1(t)= f1(t)−b1(t)u2(t) ,

u1(t)= γ1 exp
(
−

∫ t

0
a1(τ)dτ

)
+

∫ t

0
( f1(τ)−b1(τ)u2(τ))exp

(
−

∫ t

τ
a1(η)dη

)
dτ ,

|u1(t)| ≤ |γ1|exp
(
−

∫ t

0
α1dτ

)
+

∫ t

0
(| f1(τ)|+ |b1(τ)||u2(τ)|)exp

(
−

∫ t

τ
α1dη

)
dτ

≤ |γ1|exp(−α1t)+α−1
1 (∥ f1∥∞+∥b1∥∞∥u2∥∞)(1−exp(−α1t))

≤ |γ1|+α−1
1 (∥ f1∥∞+∥b1∥∞∥u2∥∞). (2.3)

Also, the similar relation can be written for (1.2):

∥u2∥ ≤ |γ2|+α−1
2 (∥ f2∥∞+∥b2∥∞∥u1∥∞). (2.4)

Considering (2.3) and (2.4) inequalities together, we obtain

∥u1∥ ≤ |γ1|+α−1
1 {∥ f1∥∞+ (|γ2|+α−1

2 ∥ f2∥∞)∥b1∥∞}[1− (α1α2)−1∥b1∥∞∥b2∥∞]−1.

Taking account with this last inequality in (2.4), we have

∥u2∥ ≤ |γ2|+α−1
2 {∥ f2∥∞+ (|γ1|+α−1

1 ∥ f1∥∞)∥b2∥∞}[1− (α1α2)−1∥b1∥∞∥b2∥∞]−1,

which lead to (2.1) for k = 1,2. Hereby, from (1.1) we can write

|u′
1(t)| ≤ | f1(t)|+ |a1(t)||u1(t)|+ |b1(t)||u2(t)|

≤ ∥ f1∥∞+∥a1∥∞∥u1∥∞+∥b1∥∞∥u2∥∞,

and from (2.1) we arrive at (2.2) for k = 1. From (1.2), evaluation for k = 2 can be found similarly.
Thus the proof is complete.

3. The Difference Scheme and Mesh
3.1 The Mesh
Let ωN be a uniform mesh on I :

ωN = {ti = ih, 1≤ i ≤ N, h = T/N}

and

ωN =ωN ∪ {t0 = 0} .

For any mesh function g(t), we use g i = g(ti) and moreover y(k)
i to denote approximations of

uk(t) at ti (for k = 1,2) and

gt,i = (g i − g i−1)/h, ∥g∥∞,ω = ∥g∥∞,ωN := max
1≤i≤N

|g i|.
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3.2 The Difference Scheme
We multiply (1.1) and (1.2) system equation by Φki(t) (for k = 1,2) basis functions, respectively,
and later integrate over (ti−1, ti) to obtain approximation for the problem. Then we get following
identity:

h−1
∫ ti

ti−1

Luk(t)Φki(t)dt = h−1
∫ ti

ti−1

fk(t)Φki(t)dt, 1≤ i ≤ N. (3.1)

The basis functions

Φki(t)= e−
∫ ti

t ak(t)dτ, ti−1 < t < ti,

which are solutions of the following problems:{− d
dtΦki(t)+ak(t)Φki(t)= 0, ti−1 < t < ti,

Φki(ti)= 1.

The relation (3.1) is rewritten as for t ∈ (ti−1, ti) and (k = 1,2),

h−1
∫ ti

ti−1

u′
k(t)Φki(t)dt+h−1

∫ ti

ti−1

ak(t)uk(t)Φki(t)dt+h−1
∫ ti

ti−1

bk(t)u3−k(t)Φki(t)dt

= h−1
∫ ti

ti−1

fk(t)Φki(t)dt. (3.2)

Using the formulas (2.1) and (2.2) from [3] on interval (ti−1, ti) taking into account (3.2), we
have following precise relation:

ℓuki ≡ Akiukt,i +Bkiu(3−k)t,i +Ckiuki +Dkiu(3−k)ki = Fki −Rki, 1≤ i ≤ N,

with

Aki = h−1
∫ ti

ti−1

[1+ (t− ti)ak(t)]Φki(t)dt,

Bki = h−1
∫ ti

ti−1

(t− ti)bk(t)Φki(t)dt,

Cki = h−1
∫ ti

ti−1

ak(t)Φki(t)dt,

Dki = h−1
∫ ti

ti−1

bk(t)Φki(t)dt,

Fki = h−1
∫ ti

ti−1

fk(t)Φki(t)dt,

and remainder terms

Rki = h−1
∫ ti

ti−1

dtbk(t)Φki(t)
∫ ti

ti−1

u′
3−k(ξ)K0(t,ξ)dξ, (3.3)

K0(t,ξ)= T0(t−ξ)−h−1(t− ti−1), T0(λ)= 1, λ≥ 0; T0(λ)= 0, λ< 0.

Eventually, we propose the following difference scheme for approximation for (1.1)-(1.3)
where yki the solution of (1.1)-(1.3) system at mesh point ti :

ℓyki ≡ Aki ykt,i +Bki y(3−k)t,i +Cki yki +Dki y(3−k)i = Fki, 1≤ i ≤ N, (3.4)

ℓyk0 ≡ γk, (3.5)

for k = 1,2.
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In addition, we suggest another difference scheme, which can be easily obtained using the
implicit Euler method, known as the classical method, as an alternative to the approximate
solution of system (1.1)-(1.3):

ℓyki ≡ ykt,i +aki yki +bki y(3−k)i = fki, 1≤ i ≤ N, (3.6)

ℓy(k)
0 ≡ γk. (3.7)

4. Convergence Analysis
We define zki = yki −uki , 1 ≤ i ≤ N error functions in order to investigate the convergence of
presented method whose the solution of the following discrete problem

ℓzki ≡ Rki, 1≤ i ≤ N, (4.1)

zk0 = 0, (4.2)

for k = 1,2.

Lemma 4.1. If ak,bk, fk ∈ C(I), then for the truncation errors we get

∥Rk∥∞,ωN ≤ CN−1,

for k = 1,2.

Proof. From (3.3), we can write

|Rki| ≤ h−1
ti∫

ti−1

dt|bk(t)||Φki(t)|
∫ ti

ti−1

|u′
3−k(ξ)||K0(t,ξ)|dξ

≤ Ch−1
∫ ti

ti−1

dt|Φki(t)|
∫ ti

ti−1

|u′
3−k(ξ)|dξ,

and by virtue of Lemma 2.1 and 0<Φki(t)≤ C, k = 1,2, we easily obtain

|Rki| ≤ Ch.

Lemma 4.2. Let zki be the solution (4.1)-(4.2) holds true and

α−1
1 α−1

2 (∥B1∥∞,ωN +∥D1∥∞,ωN )(∥B2∥∞,ωN +∥D2∥∞,ωN )< 1.

Then

∥zk∥∞,ωN ≤ C{∥R1∥∞,ωN +∥R2∥∞,ωN },

for k = 1,2.

Proof. We can rewrite eqn. (4.1) as follows

ℓzki ≡ Aki zkt,i +Bki z(3−k)t,i +Cki zki +Dki z(3−k)i = Rki, 1≤ i ≤ N.

For k = 1:

A1i z1t,i +B1i z2t,i +C1i z1i +D1i z2i = R1i ,

A1i z1t,i +C1i z1i =Q i (4.3)
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with

Q i = R1i −B1i z2t,i −D1i z2i.

Applying maximum principle [8], from (4.3), we get

|z1i| ≤α−1
1 ∥Q∥∞,ωN

≤α−1
1 ∥R1∥∞,ωN +α−1

1 (∥B1∥∞,ωN +∥D1∥∞,ωN )∥z2∥∞,ωN . (4.4)

We can write similar relation for z2i :

|z2i| ≤α−1
2 ∥R2∥∞,ωN +α−1

2 (∥B2∥∞,ωN +∥D2∥∞,ωN )∥z1∥∞,ωN . (4.5)

Substituting (4.5) inequality in (4.4):

∥z1∥∞,ωN ≤α−1
1 ∥R1∥∞,ωN +α−1

1 (∥B1∥∞,ωN +∥D1∥∞,ωN )

× [α−1
2 ∥R2∥∞,ωN +α−1

2 (∥B2∥∞,ωN +∥D2∥∞,ωN )∥z1∥∞,ωN ].

Hereby, we can obtain the following estimate for z(1)
i :

∥z1∥∞,ωN ≤ C{∥R1∥∞,ωN +∥R2∥∞,ωN }.

In a similar way, the estimation for z2i is easily achieved.

Now we give the main convergence result.

Theorem 4.1. Let uk be the solution of (1.1)-(1.3) and yk the solution (3.4)-(3.5). Then

∥yk−uk∥∞,ωN ≤ CN−1.

Proof. This follows immediately by combining the previous lemmas.

5. Algorithm and Numerical Results
In this section, we present numerical results obtained by applying the novel numerical scheme
(3.4)-(3.5) to two particular problems. Also, we present numerical results obtained by using
implicit Euler method in (3.6)-(3.7).

We rewrite difference scheme (3.4)-(3.5):

yki =
hFki

Aki +hCki
− Bki +hDki

Aki +hCki
y(3−k)i +

Aki

Aki +hCki
yk(i−1) +

Bki

Aki +hCki
y(3−k)(i−1),

and for k = 1, we obtain

y1i = hF1i

A1i +hC1i
− B1i +hD1i

A1i +hC1i
y2i + A1i

A1i +hC1i
y1(i−1) +

B1i

A1i +hC1i
y2(i−1), (5.1)

and for k = 2, we obtain

y2i = hF2i

A2i +hC2i
− B2i +hD2i

A2i +hC2i
y1i + A2i

A2i +hC2i
y2(i−1) +

B2i

A2i +hC2i
y1(i−1). (5.2)

If we use the substitution method (or Cramer’s rule) to solve (5.1)-(5.2), we have

yki =
Gki +Mki yk(i−1) +Nki y(3−k)(i−1)

Pki
,

where

Gki = (A(3−k)i +hC(3−k)i)hFki − (Bki +hDki)hF(3−k)i,
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Mki = Aki(A(3−k)i +hC(3−k)i)−B(3−k)i(Bki +hDki),

Nki = hBkiC(3−k)i −hDki A(3−k)i,

Pki = (Aki +hCki)(A(3−k)i +hC(3−k)i)− (Bki +hDki)(B(3−k)i +hD(3−k)i),

for k = 1,2.

Example 5.1. We consider the test problem:

u′
1(t)+2u1(t)−u2(t)= e−4t, t ∈ (0,1],

u′
2(t)+4u2(t)−3u1(t)= 6et, t ∈ (0,1],

u1(0)= 0, u2(0)= 1,

whose exact solution is given by

u1(t)= 1
4

(2et − e−t − e−5t),

u2(t)= 1
4

(3e−5t − e−t +6et −4e−4t).

The computational results for the test problem are presented in Table 1. We define the exact
errors E(k;N)

i and the computed maximum pointwise errors E(k;N) for any N as follows:

E(k;N)
i = |yki −uki|, 0≤ i ≤ N; E(k;N) = max

0≤i≤N
E(k;N)

i , k = 1,2.

Example 5.2. We consider the another test problem:

u′
1(t)+2u1(t)+ (1+ t)u2(t)= et, t ∈ (0,1],

u′
2(t)+4u2(t)+ e−tu1(t)= e−2t, t ∈ (0,1],

u1(0)= 0, u2(0)= 1,

whose exact solution is unknown.

Therefore, in order to calculate the maximum pointwise error, we use the double mesh
principle. Define the double mesh differences to be:

e(k;N)
i = |yN

ki − y2N
k(2i)|, 0≤ i ≤ N, k = 1,2,

where yN
ki and y2N

k(2i), respectively, denote the numerical solutions obtained using N and 2N .
Thus, the maximum pointwise-errors are taken as

e(k;N) = max
0≤i≤N

e(k;N)
i , k = 1,2.

The computational results for this test problem are presented in Table 2.
To validate the applicability of the method, two test problems are considered for numerical

experimentation for different values of the mesh points. The numerical results are listed in terms
of the approximate errors (see Tables 1-2). From the results in these tables, we observe that
the maximum pointwise errors (E(k;N) and e(k;N)) decreases monotonically and the increases.
Further, the convergence of the method is shown by the log-log plot (see Figures 1-4). From
Figures 1-4, we notice that the maximum pointwise errors are bounded by O(N−1), which is
proved in Theorem 4.1.
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Table 1. Comparison of E(k;N) of both methods for Example 5.1

N E(1;N)(PM) E(1;N)(EM) E(2;N)(PM) E(2;N)(EM)

32 8.959E-5 8.511E-3 1.070E-4 1.027E-2

64 2.240E-5 4.362E-3 2.674E-5 5.107E-3

128 5.601E-6 2.207E-3 6.689E-6 2.546E-3

256 1.400E-6 1.110E-3 1.672E-6 1.271E-3

512 3.500E-7 5.566E-4 4.180E-7 6.350E-4

1024 8.751E-8 2.787E-4 1.045E-7 3.174E-4

Table 2. Comparison of e(k;N) of both methods for Example 5.2

N e(1;N)(PM) e(1;N)(EM) e(2;N)(PM) e(2;N)(EM)

32 8.949E-5 1.791E-3 2.856E-6 6.690E-3

64 2.237E-5 9.368E-4 7.157E-7 3.464E-3

128 5.592E-6 4.794E-4 1.788E-7 1.763E-3

256 1.398E-6 2.426E-4 4.472E-8 8.895E-4

512 3.495E-7 1.220E-4 1.118E-8 4.468E-4

1024 8.738E-8 6.119E-5 2.795E-9 2.239E-4
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Figure 1. Maximum point-wise errors of log-log plot for Example 5.1 (PM)
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Figure 2. Maximum point-wise errors of log-log plot for Example 5.1 (EM)
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Figure 3. Maximum point-wise errors of log-log plot for Example 5.2 (PM)
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Figure 4. Maximum point-wise errors of log-log plot for Example 5.2 (EM)

6. Conclusion
In this paper, using the finite difference method, we have proposed a novel and efficient scheme
for solving the initial value problem of the inhomogeneous linear coupled system of ordinary
differential equations. We have proved that this scheme convergence first-order in the discrete
maximum norm. Two test problems solved using the present method and the classical method
(Euler) are discussed. The comparison of the maximum error values obtained from both methods
is presented in Tables 1-2 and demonstrated in Figures 1-4. Considering these tables and figures
it is observed that the presented method is more effective than the classical method, although
they have the same convergence order (O(N−1)). Theoretical results represents an undergoing
studies within a further research such as the systems of delay differential equations and the
singularly perturbed systems of differential equations.
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