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1. Introduction
Let G be an undirected, loop-free, and parallel edge-free graph. Let VG and EG stand for
the collection of vertices and edges in a graph. The coefficient of external stability was the term
Berge used in 1958 to refer to the domination number [2]. The term domination for undirected
graphs was first used in 1962 by Ore [13], who also developed the notions of minimal and
minimum dominating set of vertices in graphs.

The collection of vertices in G that are next to any vertex u in VG is known as the open
neighbourhood of u and mathematically, N(u)= {w ∈VG : uw ∈ EG}. The closed neighbourhood
of u is the set N[u]= N(u)∪ {u}.

In the case of a set T ⊆VG , the open neighbourhood of T is equal to the union of the open
neighbourhoods of all the vertices that belong to T , i.e., N(T) = ⋃

u∈T N(u), and the closed
neighbourhood of T is equal to N[T]= N(T)∪T .
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If D ⊆VG , then D is referred to as a dominant set of G since every vertex of V−D is adjacent
to at least one vertex of D. The number of vertices in a graph G ’s lowest minimal dominating set,
D, is known as the graph G ’s domination number and is denoted by the symbol γ(G) (Haynes et
al. [7]).

If D is a dominating set of a graph G and each vertex in D has the same degree, then D
is said to be a regular dominating set of G. Regular domination Number γR(G) of graph G is
defined as the minimum among all regular dominating sets.

In 2021, Prabakaran et al. [14] described regular dominating set (RDS) and regular
dominating number γR(G) in fuzzy graph and studied various properties and bounds of regular
domination number in several fuzzy graphs. Inspiring by this idea, we assess the regular
domination number of some simple, connected, and undirected graphs as well as the join and
corona of two graphs.

2. Definitions and Preliminaries
Definition 2.1. Let G be a simple graph, a set R ⊆VG is supposed to be a regular dominating
set (RDS) of G if:

(i) each vertex u ∈VG −R is adjacent to some vertex in R;
(ii) each vertex in R ⊆VG has the same degree.

Example 2.2. Let G1 be a graph as shown in Figure 1.

Figure 1. Graph G1

If we consider R as {u3,u4}⊆VG1 and get |N(u)∩R| ≥ 1 for u ∈ R and deg(u3)= deg(u4), it is
implied that R is a regular dominating set of graph G1. Let S = {u1,u2,u5} be the subset of VG1 .
Due to the fact that S ’s vertices do not have the same degree, it is not a regular dominating set.
Instead, S is a dominating set of G1.

Definition 2.3. If for any vertex u ∈ R, 〈R \ {u}〉 is not a regular dominating set of G, then
the regular dominating set R of G is minimal.

Definition 2.4. If R is the smallest minimal regular dominating set of graph G, then R is
referred to as a γR -set of G.

Definition 2.5. The regular domination number of graph G is denoted by the symbol γR(G)
and refers to the number of vertices in a least minimal regular dominating set of graph G.
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Definition 2.6 ([16]). The largest integer less than or equal to x is the floor function of a real
number x, and it is represented by the symbol ⌊x⌋. If n is an integer and n ≤ x < n+1, then
⌊x⌋ = n.

Definition 2.7 ([16]). The lowest integer greater than or equal to x is the ceiling function of
a real number x, and it is represented by the symbol ⌈x⌉. Assuming that n is an integer and
n−1< x ≤ n, then ⌈x⌉ = n.

Theorem 2.8 ([4]). For n ≥ 3, γ(Pn)= γ(Cn)= ⌈n
3

⌉
.

3. Main Results
Theorem 3.1. If G is a graph, then |R| ≥ 2 where R is a γR -set of graph G.

Proof. If |R| ≤ 2, it means that either |R| = 2 or |R| = 1. However, if |R| = 0, then R =φ, which
is not possible. Additionally, if |R| = 1, then R is a singleton set and each vertex must have the
same degree in accordance with the definition of regular domination. As a result, |R| ≥ 2.

Theorem 3.2. γR(Km)= 2 for a complete graph Km with m ≥ 2 vertices.

Proof. Any two vertices can form the lowest minimal regular dominating set in a complete
graph Km since all vertices have degree m−1. So, γR(Km)= 2.

Theorem 3.3. For n ≥ 6, γR(Pn)= ⌈n
3

⌉
.

Proof. Let the vertex set of Pn be {v1,v2,v3, . . . ,vn}. Since we are aware that the path graph
Pn comprises n vertices, n−1 edges, 2 pendant vertices, and n−2 vertices of degree 2. If R
is a regular dominating set, there are two alternatives for R. If v1,vn ∈ R, then v1,vn cannot
dominate n−4 vertices of Pn, which is in conflict with the concept of a regular dominating set.
Now if v2,v3, . . . ,vn−1 ∈ R then this will be a regular dominating set but not smallest one. It is
obvious that for a least minimal regular dominant set, v2 and vn−1 must be members of R. Now
we construct R as follows:

R =
{
v2+3i : 0≤ i ≤

⌈m
3

⌉
−2

}
∪ {vn−1}.

Then |R| = ⌈n
3

⌉
.

These
⌈n

3

⌉
vertices of R are of same degree and can dominate all remaining vertices of Pn,

therefore R is regular dominating set. According to Theorem 2.8, making it the smallest
minimal regular dominating set of Pn. Consequently, γR(Pn)= ⌈n

3

⌉
.

Theorem 3.4. For m ≥ 4, γR(Cm)= ⌈m
3

⌉
.

Proof. Let {v1,v2, . . . ,vm} be the vertex set and deg(vi)= 2 ∀ i. Now we construct a vertex set R
as follows:

R =
{
v1+3i : 0≤ i ≤

⌈m
3

⌉
−1

}
.

Then |R| = ⌈m
3

⌉
.

Now by using Theorem 2.8, R is the smallest minimal regular dominating set.
Thus γR(Cm)= ⌈m

3

⌉
.
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Definition 3.5 ([5]). The lollipop graph is represented by the symbol Ln,m and consists of a
bridge between a complete graph Kn and a path graph Pm. The lollipop graph for n = 3 and
m = 5 is as follows:

Figure 2. Lollipop graph L3,5

Theorem 3.6. For m ̸= 1, the regular domination number of the lollipop graph L3,m is
⌈m

3

⌉+1.

Proof. Assume that L3,m is a lollipop graph with m+3 vertices and edges. The vertex set of L3,m
is defined as {v1,v2,v3,u1,u2,u3, . . . ,um}. Here, deg(v2) = deg(v3) = 2, deg(v1) = 3, deg(um) = 1
and deg(ui)= 2 ∀ 1≤ i ≤ m−1. If L3,m has a regular dominating set, then R must include the
vertices whose degrees are equal. This suggests that neither the degree three nor the degree
one vertices can belong to R because they cannot dominate the other vertices of L3,m. We now
construct the following set using vertices of degree 2:

R1 =
{
v2,u2+3i : 0≤ i ≤

⌈m
3

⌉
−2

}
∪ {vm−1}.

R1 is a regular dominating set of L3,m, in accordance with the definition of a regular dominating
set. Additionally, the above set R1 is the smallest minimal regular dominating set of L3,m since
for any vertex v ∈ R1, the set R1− {v} does not dominate the vertices in N(v). This means that
γR(L3,m)= ⌈m

3

⌉+1.

Corollary 3.7. Lollipop graph L3,m has no γR -set for m = 1.

Figure 3. Lollipop graph L3,1

Proof. In Figure 3, deg(v1)= deg(v2)= 2, deg(v3)= 3 and deg(u1)= 1. Given that the cardinality
of the regular dominating set is greater than 2, if we consider a set R = {v3} to be the regular
dominating set of L3,1 then it leads to a contradiction because the regular dominating set’s
cardinality is larger than or equal to 2. If we consider the set {v3,u1} as a regular dominant set,
however, this would not be possible because both vertices have a different degree. Additionally,
if we consider the set {v1,v2} we see that it is not a regular dominant set since these vertices
cannot dominate the vertex u1. To construct a regular dominant set, all possible cases fail. As a
result, it is implies that lollipop graph L3,1 has no γR -set.

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 161–178, 2024



The Regular Domination Number of Some Special Graphs: J. Rani and S. Mehra 165

Definition 3.8 ([8]). If we link an edge between two copies of complete graphs Kn, then the
resulted graph is known as barbell graph and it is represented by Bn. For n = 4, the barbell
graph B4 is shown below:

Figure 4. Barbell graph B4

Theorem 3.9. Barbell graph Bn has a regular dominating set with γR(Bn)= 2 for any n.

Proof. Since Bn contains 2n vertices, 2(n−1) of them have degree n−1, while the remaining
two have degree n. Let R represent a regular dominant set.

There are two choices for R here:
First, we need to choose one vertex of degree n−1 from each copy of the complete graph Kn
if R has vertices of degree n−1. This is necessary for the regular dominant set. Also, this is
the smallest regular dominating set that can exist because a regular dominating set must have
at least two vertices of the same degree. Additionally, it is evident from Figure 4 that vertices of
degree n dominate all other vertices. This one is also a minimal dominant set of cardinality 2.
As a result, we can say that γR(Bn)= 2 for any n.

Definition 3.10 ([3]). A wheel graph is represented by Wn. The resulting graph will be a Gear
graph if we insert a new vertex between each pair of vertices in the outer cycle of Wn. By Gn,
it is indicated. Following is the gear graph for n = 5:

Figure 5. Gear graph G5

Theorem 3.11. For a gear graph Gn, γR(Gn)= n for any n.

Proof. As far as we know, the gear graph comprises a total of 2n+1 vertices where n vertices
{u1,u2,u3, . . . ,un} are of degree two, n vertices {v1,v2,v3, . . . ,vn} are of degree three, and one
central vertex, c, is of degree n. We must now choose at least two vertices of the same degree in
order to construct a regular dominant set. Let R be a regular dominating set of Gn. No vertex
of degree 2 can dominate the centre vertex c, hence if R contains all vertex of degree 2, it
contradicts our assumption. Now, if we choose vertices of degree 3 in R, then R must be a regular
dominating set as these vertices can dominate remaining vertices of the graph. Furthermore,
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R is the smallest minimal regular dominating set since R− {v} is not a dominating set for all
values of v ∈ R. Consequently, γR(Gn)= n for any n.

Definition 3.12 ([9]). Assume C5 is a cycle graph. If we find a pentagram inside C5 and
connect its vertices, the resulting graph is a Petersen graph. It has 10 vertices and 15 edges.
The Petersen graph is depicted as Figure 6.

Figure 6. Petersen graph G

Theorem 3.13. For a Petersen graph G, γR(G)= 3.

Proof. Since we know that the Petersen graph has 10 vertices, each of which is of degree three.
Let {u1,u2,u3,u4,u5,v1,v2,v3,v4,v5} represent G ’s vertex set. We know that the domination
number of the Petersen graph is 3. Because all vertices are of the same degree, the regular
domination number is also 3. The set {v3,v6,v10} in Figure 6 is the smallest minimal regular
dominating set of G. As a result, γR(G)= 3.

Theorem 3.14 ([10]). Wheel graph Wn can be transformed into a Helm graph by adding a
pendant or end vertex to each of its outer cycle vertex. It is represented by Hn. Helm’s graph for
n = 6 is depicted in Figure 7:

Figure 7. Helm graph H6

Theorem 3.15. Helm graph Hn has a regular dominating set with γR(Hn)= n for any n.
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Proof. Helm graph Hn has a total of 2n+1 vertices, with n vertices of degree 4, n pendant
vertices, and one centre vertex of degree n. If R is a regular dominating set of Hn, then every
vertex in R must be of the same degree. As a result, n vertices of degree 4 must belong to
R since they dominate every vertex of Hn. Furthermore, R is the smallest minimal regular
dominating set since, for every v ∈ R, R− {v} cannot be a dominating set.
As a result, for each n, γR(Hn)= n.

Definition 3.16 ([1]). The jellyfish graph Jm,n is created from a 4-cycle with the vertices x, y,u
and v by linking x and y with a prime edge and attaching m pendant edges to u and n pendant
edges to v. The edge connecting the vertices x and y is referred to as the prime edge in jellyfish.
It is shown in Figure 8.

Figure 8. Jellyfish graph Jm,n

Theorem 3.17. For a jellyfish graph Jm,n,

γR(Jm,n)=
{

2, if m = n,
D.N.E, if m ̸= n.

Proof. A jellyfish graph has m + n pendant vertices and deg(u) = m + 2, deg(v) = n + 2,
deg(x)= deg(y)= 3. Here, we discuss two cases:

Case 1: When m = n
In this instance, deg(u)= deg(v)= n+2. Let R be a minimal regular dominant set. If R = {x, y},
then this will be in conflict with our definition because x and y cannot dominate pendant
vertices that are connected to u and v. Now, if we select R = {u,v}, then this is the smallest
minimal regular dominating set since both have the same degree and they dominate x, y and all
m+n pendent vertices. As a result, γR(Jm,n)= 2.

Case 2: When m ̸= n
Let R1 be the regular dominant set. Only vertices of the same degree belong to R1 according to
the concept of regular dominating set. If x and y belong to R1, this is not possible since they
cannot dominate m+n pendent vertices. If m+n pendant vertices belong to R1, this is also not
possible because these cannot dominate x and y. As a result, we can conclude that there is no
regular dominating set of jellyfish graphs for m ̸= n.

Definition 3.18 ([1]). The jewel graph, Jn is derived from a four-cycle with the vertices x, y,u,v
by linking x and y with a prime edge and also by adding the edges from u and v that meet
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at common vertices vi , 1≤ i ≤ n. The edge connecting the vertices x and y in a jewel graph is
defined as the prime edge. It is depicted in Figure 9:

Figure 9. Jewel graph Jn

Theorem 3.19. For a jewel graph Jn, γR(Jn)= 2.

Proof. In the jewel graph Jn, deg(u) = deg(v) = n+2, deg(x) = deg(y) = 3 and deg(vi) = 2 for
1≤ i ≤ n. We need at least two vertices of the same degree that can dominate all other vertices
of the graph in order to have a regular dominating set. Here, we have two degree 3 vertices,
x and y, but they are insufficient to construct a regular dominating set because they cannot
dominate v1,v2, . . . ,vn. If we select all degree 2 vertices, then the degree 2 vertices that are
selected cannot dominate x and y. We now choose the vertices u and v of degree n+2, and
since they dominate all other vertices, they can form the lowest minimal regular dominating
set. Hence γR(Jn)= 2.

Definition 3.20 ([15]). A graph is said to be a complete bipartite graph in which the vertices
can be divided into two subsets, say V1 and V2, so that no edge has both ends in the same subset
and every vertex in V1 set is connected to every vertex in V2. It is represented by Km,n. For
m = 5 and n = 6 complete bipartite graph K5,6 is shown below:

Figure 10. Complete bipartite graph K5,6
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Theorem 3.21. For a complete bipartite graph Km,n,

γR(Km,n)=
{

2, if m = n,
min{m,n}, if m ̸= n.

Proof. Let V1 = {u1,u2,u3, . . . ,um} and V2 = {v1,v2,v3, . . . ,vn} be two-partite sets of the complete
bipartite graph Km,n, which has m and n vertices, respectively. It is evident that deg(ui) =
deg(um) = n+1 and deg(ui) = n+2 for 2 ≤ i ≤ m−1. Similarly, deg(vi) = deg(vn) = m+1 and
deg(v j)= m+2 for 2≤ j ≤ n−1. Here, we discuss two cases:

Case 1: If m = n
In order to construct a regular dominating set, we choose one vertex from set V1 and another
from set V2. Additionally, this is a regular dominating set with minimal cardinality. Therefore,
γR(Km,n)= 2 for m = n.

Case 2: If m ̸= n
Firstly, we consider m > n. Here, the set V2 = {v1,v2,v3, . . . ,vn} constitute a regular dominating
set of minimum cardinality. So, the regular domination number is n. Now, if we consider m < n,
then the vertex set V1 = {u1,u2,u3, . . . ,um} constitutes a regular dominant set with a minimum
cardinality. Thus, for m ̸= n, γR(Km,n)=min{m,n}.

Definition 3.22 ([6]). The union of the two graphs G1 and G2 with all of the edges joining VG1

and VG2 is the join G1 +G2 of the graphs with disjoint point sets VG1 and VG2 and edge sets
EG1 and EG2 .
Mathematically, V (G1 +G2)=VG1 ∪VG2 and E(G1 +G2)= EG1 ∪EG2 ∪ {uv;u ∈VG1 ,v ∈VG2}.

Definition 3.23 ([12]). By combining two graphs K1 and an empty graph Kn, the star graph
Sn,1 is formed. The star graph illustration for n = 7 is shown below:

Figure 11. Star graph S7,1

Theorem 3.24. For star graph Sn,1 on n+1 vertices, γR(Sn,1)= n.

Proof. There are n pendent vertices and one central vertex of degree n in a star graph. Two
vertices of the same degree are required for a regular dominating set. As a result, the centre
vertex v0 cannot create a regular dominating set, so we must select all n pendant vertices to
make a regular dominating set that is the least minimal regular dominating set.
As a result, γR(Sn,1)= n.
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Theorem 3.25. Let Pn and Pm be two Path graphs on n ≥ 4 and m ≥ 4 vertices, respectively.
Then

γR(Pn +Pm)=
{

2, if n = m,⌈min{n,m}
3

⌉
, if n ̸= m .

Figure 12. Join of two graphs: P5 +P6

Proof. Let V (Pn) = {v1,v2,v3, . . . ,vn} and V (Pm) = {u1,u2,u3, . . . ,um} denote the vertex sets of
Pn and Pm, respectively. Now, according to the definition of join of graphs, every vertex of Pn is
adjacent to every vertex of Pm; therefore, deg(v1)= deg(vn)= m+1 and deg(vi)= m+2, for all
2≤ i ≤ n−1. Similarly, deg(u1)= deg(un)= n+1 and deg(u j)= n+2, for all 2≤ j ≤ m−1.

Here we consider three cases as follows:

Case 1: If m = n
To construct a regular dominating set, we require at least two vertices of the same degree that
can dominate all other vertices of V (Pn +Pm). In this case, any two vertices in the graph form a
regular dominating set. Also, R must be minimum because any regular dominant set cannot be
a singleton set. Thus, γR(Pn +Pm)= 2.

Case 2: If n < m
In this case, we create Table 1 to determine the regular domination number as follows:

Table 1. Regular domination number of Pn +Pm

S. No. Values of n Values of m γR(Pn +Pm)

1 n = 4 m = 5,6,7, . . . 2

2 n = 5 m = 6,7,8, . . . 2

3 n = 6 m = 7,8,9, . . . 2

4 n = 7 m = 8,9,10, . . . 3

5 n = 8 m = 9,10,11, . . . 3

6 n = 9 m = 10,11,12, . . . 3

S. No. Values of n Values of m γR(Pn +Pm)

7 n = 10 m = 11,12,13, . . . 4

8 n = 11 m = 12,13,14, . . . 4

9 n = 12 m = 13,14,15, . . . 4

10 n = 13 m = 14,15,16, . . . 5

11 n = 14 m = 15,16,17, . . . 5

12 n = 15 m = 16,17,18, . . . 5

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 161–178, 2024



The Regular Domination Number of Some Special Graphs: J. Rani and S. Mehra 171

Consequently, using the values from the above table as a generalisation, we have γR(Pn+Pm)=
⌈n

3 ⌉.
Case 3: If n > m
The proof is the same as in Case 2.

From the above two cases, we conclude that γR(Pn +Pm)= ⌈min{n,m}
3

⌉
for n ̸= m.

Corollary 3.26. For m = 3 or n = 3 then γR(Pn +Pm)= 2.

Figure 13. Join of two graphs: P3 +P3

Proof. From Figure 13, it is obvious that deg(v1) = deg(v3) = deg(u1) = deg(u3) = 4 and
deg(v2)= deg(u2)= 5. A regular dominant set of least cardinality can be formed here by any two
vertices of the same degree. Hence γR(P3 +P3)= 2.

Definition 3.27 ([12]). A cone graph, Cm,n, is produced when a cycle graph Cm on n vertices
and an empty graph Kn on n vertices are joined. For m = 7 and n = 2, the cone graph is as
follows:

Figure 14. Cone graphs: C7,2

Theorem 3.28. For a cone graph Cm,n with m ≥ 4 and n ≥ 3 vertices

γR(Cm,n)=
{⌈m

3

⌉
, whenever m

3 ≤ n,
n, whenever m

3 > n.

Proof. As we know, a cone graph Cm,n is formed by joining a cycle graph Cm and an empty
graph Kn on n vertices, i.e. Cm,n ∼= Cm+Kn. According to the notion of joining two graphs, every
vertex of Kn is connected to every vertex of Cm in the cycle, which has vertex degrees of two.
The degrees of each vertex in Cm and Kn will therefore be n+2 and m, respectively. We create
the following table for m ≥ 4 and n = 3 to demonstrate our conclusion:
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Table 2. Regular domination number of cone graph γR(Cm,3)

S. No. Values of m Values of n γR(Cm,3)

1 m = 4 n = 3 2

2 m = 5 n = 3 2

3 m = 6 n = 3 2

4 m = 7 n = 3 2

5 m = 8 n = 3 2

6 m = 9 n = 3 2

7 m = 10 n = 3 2

8 m = 11 n = 3 2

9 m = 12 n = 3 2

10 m = 13 n = 3 2

The values in Table 2 show that the regular domination number is always n if the value of
m
3 > n, and that it is

⌈m
3

⌉
if the value of m

3 ≤ n.

Corollary 3.29. For m ≥ 4 and n = 1, the regular domination number of the cone graph Cm,n is⌈m
3

⌉
.

Figure 15. Cone graph: C5,1

Proof. Let C5,1 be a cone graph with m = 5 and n = 1 vertices, as illustrated in Figure 15. Each
vertex of C5 has a degree of 3 and the singleton vertex has a degree of 5. A regular dominating
set must have at least two vertices, hence a singleton vertex v cannot form a regular dominating
set. As a result, the vertices of C5 form a regular dominating set, and Theorem 3.4 states that it
is

⌈5
3

⌉= 2.

Corollary 3.30. For m ≥ 3 and n = 2, the regular domination number of the cone graph Cm,n
is 2.

Proof. The empty graph’s vertices form a regular dominating set of cardinality 2 as can be seen
in Figure 14. Additionally, vertices of cycle C7 of cardinality 3 can be used to create a regular
dominating set; however, this is not the smallest regular dominating set. Thus γR(C7,2)= 2. As
with all values of m ≥ 7 with n = 2, the regular domination number will always be 2.
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Definition 3.31 ([12]). The generated graph is a fan graph Fm,n if we link an empty graph Km
on m vertex and a path graph Pn on n vertex. Below is the fan graph for m = 2 and n = 7:

Figure 16. Fan graph: F2,7

Theorem 3.32. For any fan graph Fm,n with m ≥ 2 and n ≥ 4 vertices,

γR(Fm,n)=
{

m, if n
3 ≥ m,

⌈m
3 ⌉, if n

3 < m.

Proof. Let the vertex set of the fan graph be {u1,u2,u3, . . . ,um,v1,v2,v3, . . . ,vn}. As far as we
know, an empty graph is a join of a path graph Pn on n vertices and an empty graph Km on m
vertices. Every vertex of the path graph is now connected to every vertex of the empty graph
according to the joining of the two graphs, so deg(v1)= deg(vn)= m+1 and deg(vi)= m+2 for
2≤ i ≤ n−1 and deg(u j)= n ∀ j. Now, as indicated below, we create the tables below to calculate
the regular domination number of Fm,n:

Table 3. Regular domination number of fan
graph γR(F2,n)

S. No. Values of m Values of n γR(F2,n)

1 m = 2 n = 4 2

2 m = 2 n = 5 2

3 m = 2 n = 6 2

4 m = 2 n = 7 2

5 m = 2 n = 8 2

6 m = 2 n = 9 2

7 m = 2 n = 10 2

8 m = 2 n = 11 2

9 m = 2 n = 12 2

10 m = 2 n = 13 2

Table 4. Regular domination number of fan
graph γR(F3,n)

S. No. Values of m Values of n γR(F3,n)

1 m = 3 n = 4 2

2 m = 3 n = 5 2

3 m = 3 n = 6 2

4 m = 3 n = 7 3

5 m = 3 n = 8 3

6 m = 3 n = 9 3

7 m = 3 n = 10 3

8 m = 3 n = 11 3

9 m = 3 n = 12 3

10 m = 3 n = 13 3
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Tables 3 and 4 show that when n
3 ≥ m, the regular domination number is m, and if n

3 ≤ m,
the regular domination number is

⌈m
3

⌉
.

Corollary 3.33. For m = 1 and n ≥ 4, the regular domination number of the fan graph Fm,n is⌈m
3

⌉
.

Figure 17. Fan graph: F1,7

Proof. According to the definition, the singleton vertex u1 does not form a regular dominating
set. So, vertices of path P7 form a regular dominating set. According to Theorem 3.3,
γR(Pn)= ⌈m

3

⌉
. Hence, γR(F1,7)= ⌈7

3

⌉= 3.

Corollary 3.34. The regular domination number of fan graph Fm,n for m ≥ 1 and n = 2 or 3
is 2.

Definition 3.35 ([11]). Windmill graph Wm,n is an undirected graph constructed by joining m
copies of complete graph Kn with a common vertex K1. The figure of windmill graph for m = 3
and n = 4 is as below:

Figure 18. Windmill graph: W3,4

Theorem 3.36. For any windmill graph Wm,n with m ≥ 2 and n ≥ 3, γR(Wm,n)= m.

Proof. As we know, a windmill graph is created by combining m copies of the complete graph
Kn at a common vertex, which is denoted by the notation mKn +K1. It is obvious that a regular
dominating set cannot be formed by the common vertex v since a regular dominating set requires
at least two vertices. Each vertex in the m copies of the complete graph has a degree of n. Now,
we must choose at least one vertex from each copy of the complete graph in order to build a
regular dominant set. Additionally, since R− {v} cannot be a regular dominating set for every
vertex v ∈ R, this is the least minimal regular dominating set. Therefore, γR(Wm,n)= m.
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Definition 3.37 ([6]). A pair of graphs, G and H, where O(G) = m and O(H) = n, will be
considered. A graph called the corona product G ◦H of two graphs is created by taking one copy
of G and |V (G)| = m copies of H and connecting the i-th vertex of G to each vertex in the i-th
copy of H.

Theorem 3.38. Let Pn and Pm be two path graphs on n and m vertices respectively, then
γR(Pn ◦Pm)= n×⌈m

3

⌉
.

Figure 19. Corona of two graph: P5 ◦P4

Proof. As we know that Pn not a regular graph and deg(v1)= deg(vn)= m+1 and deg(vi)= m+2
for 2≤ i ≤ n−1. It is clear that either vertices of degree m+1 or m+2 are not sufficient to form a
regular dominating set of Pn ◦Pm. Now we have an another choice to form a regular dominating
set with vertices of n copies of Pm. Let Hvi be the ith copy of Pm. As we already prove that
regular domination number of path graph is

⌈m
3

⌉
so that we have to select ⌈m

3 ⌉ vertices of same
degree from n copies of Pm. Thus, γR(Pn ◦Pm)= n×⌈m

3

⌉
.

Corollary 3.39.
(i) γR(Pn ◦Pm)= 2 for n = 2 and m ∈Z+.

(ii) γR(Pn ◦Km)= mn.

(iii) γR(Cn ◦Km)= n.

Theorem 3.40. Let G be a regular graph of order n and H be any graph of order m, then
γR(G ◦H)= n.

Figure 20. Corona of two graph: C3 ◦K1
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Proof. Let {v1,v2,v3, . . . ,vn} be the vertex set of the regular graph G of order n, where each
vertex has the same degree and let H be any graph of order m whose each vertex is attached to
every vertex of G. Here, we have two choices for the minimum RDS. Since all the vertices of G
have same degree, the vertex of G forms an RDS of cardinality n. Also, by choosing at least one
vertex from n-copies of H, we construct another RDS of cardinality n. Both sets are regular
dominating sets of minimum cardinaltiy. Therefore, γR(G ◦H)= n.

Theorem 3.41. Let G be a non-regular graph of order n and H be a complete graph Km on m
vertices, then γR(G ◦H)= n.

Figure 21. Corona of two graph: P3 ◦K3

Proof. Let G be a non-regular graph and {v1,v2,v3, . . . ,vn} be its vertex set. According to the
definition of corona, there are n-copies of Km attached to each vertex G. Since G is a non-regular
graph, its vertex does not form an RDS. Now, to construct the RDS of G ◦Km of minimum
cardinaltiy, select at least one vertex from n-copies of Km. Therefore, γR(G ◦H)= n.

4. Application of Regular Domination
The concept of domination has its application in identifying minimum number of security
guards to guard a city. Also, total domination is about choosing minimum number of security
guards where one guard is designated as backup to the other. Identifying the minimum number
of security guards needed to protect a city while assigning each guard an equal amount of
responsibilities (by allocating each guard an equal number of positions) is the application of
regular domination.

5. Conclusion
Motivated by the concept of regular domination in fuzzy graph described by Prabakaran et
al. [14] we introduced concept of regular domination for simple graphs. Here, we determined the
regular domination number of several graphs like complete graphs, path graphs, cycle graphs,
lollipop graphs, barbell graphs, gear graphs, Petersen graphs, helm graphs, jellyfish graphs,
jewel graphs, and complete bipartite graphs. Further, regular domination number can also be
determined for specific graph operations such as join and corona of two graphs.
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