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Abstract. This paper describes the non-uniform heat source/sink effect on MHD heat and mass
transfer of a thin liquid film taking nonlinear thermal radiation over a permeable unsteady stretching
surface. Boundary conditions are taken as convective type. Similarity transformation are used to
convert unsteady boundary layer equations to a system of non-linear ordinary differential equations.
For the presence of nonlinear thermal radiation term in the energy equation the momentum, energy
and mass-diffusion equations are highly non-linear. Thus, we can not be solved the problem analytically.
To solve the problem we use numerical Runge-Kutta-Fehlberg method with shooting technique.
Shooting technique helps us to determine the unknown initial condition. The effect of various
parameters like Prandtl number, Schmidth number, source/sink parameters, radiation parameters,
magnetic parameter, unsteadiness parameter are shown and discuss here. Some numerical results are
compare in a table with previous work. It is found that increase in space dependent heat source/sink
parameter and temperature dependent heat source/sink parameter decreases temperature gradient.
Thermal radiation decrease the cooling rate of the thin liquid film, also increase in magnetic parameter
decreases velocity distribution and increase in the temperature and concentration gradients.
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1. Introduction
The study of heat and mass transfer in a thin liquid film has gained tremendous interest
amongst researchers for the past few years for its industrial and engineering applications.
The flow and heat transfer knowledge within a thin liquid film is used to understand the
coating process and chemical processing equipments and design of various heat exchangers.
The problem has scientific and engineering applications such as in extrusion process of metal
and polymer, glass fiber and paper production, hot rolling, wire drawing, electronic chips, food
processing, crystal growing, plastic manufactures and in application of paints. Such applications
involve cooling of a molten liquid by drawing it into a cooling system. Sakiadis [11] initiated
the study of the boundary layer flow generated by a continuous solid surface moving with a
constant speed. Crane [4] studied the steady two-dimensional boundary layer flow of Newtonian
fluids driven by the stretching plastic sheet. Wang [15] analyzed thin film flow over a horizontal
stretching sheet using homotopy analysis method. Liu and Megahed [8] investigated effect of
thermal radiation with variable heat flux in heat transfer aspect of a thin liquid film.

Khan et al. [5] analyzed numerical heat transfer and friction drag relating to Joule heating,
viscous dissipation effect and heat generation/absorption in aligned MHD slip flow. Liu and
Megahed [7] studied thin film flow and heat transfer over an unsteady stretching surface
in presence of variable heat flux, thermal radiation and internal heating. Zhou et al. [16]
investigated unsteady radiative slip flow of Casson fluid over a permeable stretched surface in
presence of MHD and non-uniform heat source. Abel et al. [2] studied effect of non-uniform heat
source on MHD heat transfer in a liquid film. Tsai et al. [13] investigate effects of non-uniform
heat source on flow and heat transfer over an unsteady stretching surface. Aziz et al. [3] studied
heat transfer in a liquid film taking permeable stretching sheet. Seddek and Salem [12] shows
magnetic field effects on flow and heat transfer to a continuous moving flat plate. Vajravelu
and Rollins [14] take magnetic field only to study heat transfer in an electrically conducting
fluid over a stretching surface. Noor and Hashim [9] analyzed effects of magnetic field on the
flow and heat transfer in a liquid film over an unsteady elastic stretching surface. Abel et al. [1]
presents a mathematical analysis of flow and heat transfer to a laminar liquid film from a
horizontal stretching surface in presence of magnetic field.

Motivated from the previous works, we consider in this paper the effects of non-uniform heat
source/sink, non-linear thermal radiation on MHD heat and mass transfer in a thin liquid film
over an unsteady stretching surface. The results obtained from the present work will provide
useful information for application and also serve as a complement to the previous studies.

2. Formulation of the Problem
Let us consider a thin elastic sheet issues from a narrow slit at the origin of a Cartesian
co-ordinate system. The continuous surface at y= 0 is aligned with the x-axis and moves in its
own plane (see Figure 1) with a velocity

U(x, t)= bx
1−at

, (1)

where b and a are both positive constant with dimension per time.
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Figure 1. Geometrical configuration of the problem

The elastic sheet temperature Ts is assumed to vary both along the sheet and with time
accordance with

Ts = T0 −Tref

(
dx2

κ
√
ρb/µ

)
(1−at)−

3
2 , (2)

where T0 is the temperature of the slit, Tref is the constant reference temperature, ρ is the
fluid density, t is time, µ is the viscosity of the fluid and κ be thermal conductivity of fluid.
The applied transverse magnetic field B1(t) is defined by Abel et al. [2]

B1(t)= B0(1−at)−
1
2 ,

where B0 is uniform magnetic field. A thin liquid film of uniform thickness h(t) lies on the
horizontal surface. The surface heat flux qt(x, t) at the stretching sheet varies with the power of
distance x from the slit and with the inverse power of time factor t as [6]

qt(x, t)=−κ∂T
∂y

=−Tref
dx2

(1−at)2 . (3)

The surface mass flux qm(x, t) at the stretching sheet varies with the power of distance x from
the slit and with the inverse power of time factor t as [13]

qm(x, t)=−D
∂C
∂y

=−Cref
dx2

(1−at)2 , (4)

where κ is the thermal conductivity, Tref is reference temperature, Cref is reference
concentration, d is a constant.
The boundary layer equations mass, momentum and for energy conservation are given by,

∂u
∂x

+ ∂v
∂y

= 0, (5)

∂u
∂t

+u
∂u
∂x

+v
∂u
∂y

= µ

ρ

∂2u
∂y2 − σB2

1

ρ
u, (6)

∂T
∂t

+u
∂T
∂x

+v
∂T
∂y

= κ

ρCp

∂2T
∂y2 − 1

ρCp

∂qr

∂y
+ q′′′

ρCp
, (7)

∂C
∂t

+u
∂C
∂x

+v
∂C
∂y

= D
∂2C
∂y2 , (8)
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where u and v are velocity components along the direction of x and y respectively. qr called
the radiative heat flux, Cp is the specific heat at constant pressure. The corresponding boundary
conditions are:

u =U(x, t), v = vw, −k
∂T
∂y

= qt(x, t), −D
∂C
∂y

= qm(x, t) at y= 0,

∂u
∂y

= ∂T
∂y

= ∂C
∂y

= 0 at y= h(t),

v = dh
dt

at y= h(t).

(9)

The non-uniform heat source/sink is modeled as

q′′′ = κU
xν

[A∗(Ts −T0) f ′+ (T −T0)B∗], (10)

where A∗ and B∗ are the coefficients of space and temperature dependent heat source/sink
respectively. Here, we make a note that the case A∗ > 0, B∗ > 0 corresponds to internal heat
generation and that A∗ < 0, B∗ < 0 corresponds to internal heat absorption. ν= µ

ρ
is constant

kinematic viscosity. The radiative heat flux qr is taken according to Rosseland approximation as

qr =−16σ∗

3k∗ T3∂T
∂y

, (11)

where σ∗ is the Stefan-Boltzman constant, and k∗ be the mean absorption coefficient.
The system of partial differential equations are transformed into a system of nonlinear ordinary
differential equation by using the similarity transformations, which are given as follows:

η=
(

b
ν

) 1
2

(1−at)−
1
2 y,

u = bx(1−at)−1 f
′
(η),

v =−(bν)
1
2 (1−at)−

1
2 f (η),

T = T0 −Tref

(
dx2

κ
p

b/ν

)
(1−at)−

3
2θ(η),

C = C0 −Cref

(
dx2

D
p

b/ν

)
(1−at)−

3
2φ(η).



(12)

The dimensionless thin film thickness β is defined by

β=
(

b
ν

) 1
2

(1−at)−
1
2 h(t). (13)

The rate at which film thickness varies can be obtained by differentiating (13) with respect to t
to obtain

dh
dt

=−aβ
2

[
ν

b(1−at)

] 1
2

. (14)

Thus, v = dh
dt at y= h(t) given by the boundary condition (9) which is transformed into the free

surface condition (14).
The transformed set of ordinary differential equations are

f ′′′+
(
f f ′′− f 2 −S f ′− S

2
η f ′′−M f ′

)
= 0, (15)
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1
Pr
θ′′+ Nr

Pr
(1+ (θw −1)θ)2[3(θw −1)θ′2 + (1+ (θw −1)θ)θ′′]

+ 1
Pr

(A∗ f ′+B∗θ)+
[

f θ′−2 f ′θ− 3
2

Sθ− S
2
ηθ′

]
= 0, (16)

φ′′−Sc
[

3S
2
φ+ S

2
ηφ′+2 f ′φ− fφ′

]
= 0, (17)

subject to the boundary conditions
f (0)= fw, f ′(0)= 1, θ′(0)=−1, φ′(0)=−1,

f ′′(β)= 0, θ′(β)= 0, φ′(β)= 0,

f (β)= Sβ
2

,

 (18)

where prime represent differentiation with respect to η, S = a
b be the unsteadiness parameter,

Pr = µcp
κ

be the Prandtl number, β be the dimensionless thin film thickness, Nr = 16σ∗T3
0

3k∗κ be
the radiation parameter, θw = Ts

T0
be the temperature ratio parameter, Sc= ν

D be the Schmidt

number, M = σB2
0

ρb be the magnetic parameter, fw being the permeability parameter.

3. Numerical Method
The non-linear differential eqs. (15), (16) and (17) with appropriate boundary conditions (18)
are solved numerically by using Runge-Kutta-Fehlberg (RKF) fifth order technique along with
shooting method. At a very first step, the higher order non-linear differential equations (15),
(16) and (17) are converted into simultaneous differential equation of first order and further
they are transformed into initial value problem by applying the shooting technique. Then initial
value problem is solved by Runge-Kutta-Fehlberg fifth order method. The ordinary differential
equations (15) to (17) which are of third order in f , second order in θ and second order in φ

are reduced to a system of seven simultaneous equations of first order having seven unknowns.
The convergence criterion is employed in the present work based on the difference between
the value of the dependent variables of the present and previous iterations. When the absolute
values of the difference reaches 10−6 which showed that the solution has converged to the
desired accuracy then the iteration process is stopped. The governing non-linear ordinary
differential equations are reduced to a set of simultaneous first order differential equation as
follows:

y1 = f , y2 = f ′, y3 = f ′′, y4 = θ, y5 = θ′, y6 =φ, y7 =φ′,

F1 = y2, F2 = y3, F3 =−
(
y1 y3 − y2

2 −Sy2 − S
2
ηy3 −M y2

)
, F4 = y5,

F5 =
−[

3Nr(θw −1)y2
5(1+ (θw −1)y4)2 + (A∗y2 +B∗y4)+Pr(y1 y5 − 3

2 Sy4 − S
2 ηy5 −2y2 y4)

]
[1+Nr(1+ (θw −1)y4)3]

,

F6 = y7, F7 =Sc
(
3S
2

y6 + S
2
ηy7 +2y2 y6 − y1 y7

)
.

Communications in Mathematics and Applications, Vol. 14, No. 5, pp. 1857–1870, 2023



1862 Effects of Non-Uniform Heat Source-Sink and Nonlinear Thermal Radiation on MHD Heat. . . : P. Saha

The boundary condition becomes{
y1 = fw, y2 = 1, y5 =−1, y7 =−1, at η= 0,
y3 = 0, y5 = 0, y7 = 0, at η=β .

Since the values of y3(0), y4(0), y6(0) are not prescribed, so we have to use the multiple shooting
method to find three initial values. Then the resultant system of seven simultaneous equations
is solved numerically by fifth-order Runge-Kutta-Fehlberg integration scheme (Saha [10]).

Table 1. Comparison of skin friction coefficient − f ′′(0) and β values using RKF method when parameter
Nr= 0, M = 0

− f ′′(0) β

S Liu and Megahed [10] Present work Liu and Megahed [10] Present work

0.6 3.742316 3.742786 3.131252 3.1317100

0.8 2.680943 2.680962 2.151989 2.1519911

1.0 1.972317 1.972387 1.543622 1.5436177

1.2 1.442621 1.442627 1.127779 1.1277820

1.4 1.012735 1.012785 0.821033 0.8210349

1.6 0.642368 0.642402 0.576171 0.5761762

1.8 0.309134 0.309146 0.356390 0.3563941

4. Results and Discussion
The highly non-linear system of differential equations (15)-(17) subject to the boundary
conditions (18) is solved numerically by using fifth order Runge-Kutta-Fehlberg numerical
method with shooting technique. The effects of various important physical parameters such
as heat source/sink parameter, magnetic parameter, Prandtl number Pr, thermal radiation
parameter Nr, Schmidt number Sc and unsteadiness parameter S on non dimensional velocity
components, temperature gradient, concentration gradient are analyzed and discussed in detail.
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Figure 2. Effects of space dependent heat source/sink parameter A∗ on temperature gradient θ′(η)
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Figure 2 shows the variation of temperature gradient for different values of space dependent
heat source/sink parameter A∗. For increases of A∗ temperature gradient is decreases.
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Figure 3. Effects of temperature dependent heat source/sink parameter B∗ on temperature gradient
θ′(η)

Figure 3 shows the effect of temperature dependent heat source/sink parameter B∗ on
temperature gradient. For increases of B∗ temperature gradient is decreases. We know the
fact that the case A∗ > 0, B∗ > 0 correspond to internal heat generation and A∗ < 0, B∗ < 0
correspond to internal heat absorption. The heat generation/absorption depends on the axial
flow f ′ and also on the boundary layer temperature T . The combine influence of the space
dependent and temperature dependent heat source/sink parameters that determines the range
of the temperature falls or rises in the boundary layer region. From these plots it is clear
that the energy is released for increasing values of A∗ > 0, B∗ > 0 and therefore temperature
gradient decrease, whereas energy is absorbed for decreasing values of A∗ < 0, B∗ < 0 resulting
temperature gradient increase.
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Figure 4. Effects of magnetic parameter M on velocity profile f ′(η)
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Figure 4 shows the effect of magnetic parameter M on velocity profile. It is observed from
this figure that for increase in the magnetic parameter is to decrease the velocity profile in the
thin film. Physically, a drag like force known as Lorentz force is generated for the presence of
the transverse magnetic field, which results in decrease the velocity field.
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Figure 5. Effects of magnetic parameter M on temperature gradient θ′(η)

Figure 5 depicts magnetic parameter effects on the temperature gradient. For the increase
of magnetic parameter M then the temperature gradient also increase and thin film thickness
η decreases. So transverse magnetic field contributes to the thickening of the thermal boundary
layer.
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Figure 6. Effects of magnetic parameter M on concentration gradient φ′(η)

Figure 6 represents the effect of magnetic parameter M on the concentration gradient. Since
a drag force is produce for increasing of the magnetic field which opposes the flow. Thus, as the
magnetic parameter M increases there results in increase the concentration gradient.
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Figure 7. The effect of Prandtl number Pr on temparature gradient θ′(η)

Figure 7 shows temperature gradient profile for different values of the Prandtl number.
Prandtl number Pr being the ratio of momentum diffusivity and thermal conductivity for a fluid.
So for increase of Prandtl number there would be increase in the thin film thickness. Thus,
temperature gradient increase for the increase in the values of Prandtl number.
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Figure 8. Effect of radiation parametere Nr on temperature gradient θ′(η)

Figure 8 shows variation of the temperature gradient along η for different values of thermal

radiation parameter Nr. From the expression for Nr= 16σ∗T3
0

3k∗κ , we see that when Nr increases
then the Rosseland radiative absorption coefficient k∗ decrease, so heat flux qr (=−16σ∗

3k∗ T3 ∂T
∂y )

decrease which results temperature gradient decrease. Thus, for increase in the thermal
radiation parameter there is decrease in the temperature gradient in the thermal boundary
layer.

Communications in Mathematics and Applications, Vol. 14, No. 5, pp. 1857–1870, 2023



1866 Effects of Non-Uniform Heat Source-Sink and Nonlinear Thermal Radiation on MHD Heat. . . : P. Saha

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

S=0.8
θ

w
=0.9

Nr=0.7
Pr=1.5
A*=0.6
B*=0.6
f
w
=0.1

M=0.5

φ
'(η

)

η

 Sc=0.6
 Sc=1.1

Figure 9. Effects of Scmidth number Sc on concentration gradient φ′(η)

Figure 9 shows concentration gradient for different values of Schimdt number Sc. It is
observed from this plot that as Schimdt number increases then concentration gradient increases,
i.e. mass transfer rate increases. The Schimdt number be the ratio of the momentum to the mass
diffusivity and therefore Schmidt number is inversely proportional to the diffusion coefficient
D. So, concentration of the fluid decreases with increase of Sc.
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Figure 10. Effects of unsteadiness parameter S on velocity profile f ′(η)

Figure 10 represents the variation of velocity profile for different values of unsteadiness
parameter S. It is observed that increase of the unsteadiness parameter S there is increase in
the velocity profile of the thin film flow and reduction in the thin film thickness η.

Figure 11 shows that for an increase of unsteadiness parameter S the temperature gradient
of the flow increases due to decrease in the thin film thickness η.
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Figure 11. Effects of unsteadiness parameter S on temperature gradient θ′(η)

Figure 12 shows that for the increase in the unsteadiness parameter S, the concentration
gradient of the flow increases, whereas the thin film thickness η decreases due to which mass
transfer rate increases within thin film liquid.
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Figure 12. Effects of unsteadiness parameter S on concentration gradient φ′(η)

Nomenclature
a,b,d positive constant
A∗ space dependent heat source-sink parameter
B∗ temperature dependent heat source-sink parameter
B0 uniform magnetic field
B1 transverse magnetic field
C concentration of the fluid
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Cp specific heat at constant pressure
Cref reference concentration
D diffusion coefficient
f dimensionless stream function
fw permeability parameter
h thickness of thin liquid film
k thermal conductivity
k∗ Rosseland mean spectral absorption coefficient
M magnetic parameter
Pr Prandtl number
q heat flux
qm surface mass flux at the stretching surface
qr radiative heat flux
qt surface heat flux at the stretching surface
Q heat generation or absorption per unit volume
S unsteadiness parameter
Sc Schmidt number
t time
T temperature of fluid
T0 temperature at the slit
Tref reference temperature
Ts elastic sheet temperature
u,v velocity component along x and y direction
U velocity of stretching sheet
vw permeability parameter
x, y direction along and perpendicular to the plate, respectively

Greek symbols

β dimensionless thin film thickness
η similarity variable
µ viscosity of the fluid
ν kinematic viscosity of the fluid
ρ density of the fluid
σ∗ Stefan-Boltzman constant
θ dimensionless temperature
θw temperature ratio parameter
φ dimensionless concentration

Superscripts

′ Differentiation with respect to η

Communications in Mathematics and Applications, Vol. 14, No. 5, pp. 1857–1870, 2023



Effects of Non-Uniform Heat Source-Sink and Nonlinear Thermal Radiation on MHD Heat. . . : P. Saha 1869

5. Conclusion
The effects of non uniform heat source/sink, thermal radiation, magnetic field is presented.
Some of the important findings of the problem are listed below:

(i) Increases of space dependent heat source/sink parameter A∗ and temperature dependent
heat source/sink parameter B∗ temperature gradient is decreases in both cases.

(ii) Thermal radiation decrease the cooling rate of the thin liquid film but reverse effect is
seen with the Prandtl number.

(iii) For the increase of the unsteadiness parameter S velocity profile of the thin film flow
increase.

(iv) Increasing the magnetic parameter results in decrease in the velocity distribution and
increase in the temperature and concentration gradients.

(v) Mass transfer rate increases with increase of the Schimdt number.
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