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Abstract. In this paper, the impact of rotation on the propagation of plane waves for various rotation
parameter values has been studied. For this purpose, a model has been developed which is assumed to
rotate with uniform angular velocity. A transversely isotropic solid medium with microstretch elastic
properties has linear governing equations that are focused in the x-z plane. For the incident Coupled
Longitudinal Displacement (CLD) wave, four reflected coupled plane waves exists in the same medium.
A half-space surface with no stresses of a material is thought to exist where the CLD wave reflects.
On the stress-free surface of the half-space, the appropriate potentials for the incident and reflected
waves satisfy the necessary boundary conditions, and relationships in the amplitude ratios of reflected
waves are obtained. Graphs of plane wave speeds and amplitude ratios versus propagation angle are
shown for various values of the rotation parameter.
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1. Introduction
1.1 Background
In a mathematical sense, continuum materials are addressed by classical elasticity theory.
In this continuum, the molecular structure of the material is disregarded and its points
are thought of as material particles, which are just geometrical points in three-dimensional
Euclidean spaces. Some materials, such as steel, aluminium, concrete, etc., are found to exhibit
results that fairly coincide with those of experimentally observed results when they are within
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the elastic limits. There are notable discrepancies between experimental results and those
obtained using classical elasticity in some materials, such as fibrous materials, polymers, and
asphalts. These differences are primarily caused by the predominance of the atomic structures
of the materials, which were ignored in classical elasticity. These discrepancies are readily a
parent when it comes to dynamical difficulties with elastic vibrations involving high frequencies
and brief wavelengths, or ultrasonic waves. When granular and multi-molecular bodies vibrate,
new types of waves that were not anticipated by the classical theory of elasticity appear, making
the influence of microstructure more significant. The theories of “micropolar continua” and
“microstretch continua”, which are specialized versions of the theory of “micromorphic continua”
that Eringen and his collaborators had previously developed, were created by Eringen in 1967
and 1990, respectively. So, the “3M” theories of Eringen (Micromorphic, Microstretch and
Micropolar) are the generalization of the traditional theory of elasticity. In the theory of polar
continuum mechanics, every material point possesses a unique deformable microstructure.
The terms “classical macrodeformation” and “microdeformation” describe the deformation of a
particle in a micromorphic continuum (microrotation of directors and microstretch of directors).
Each point can experience microrotation and microstretch (breathing micromotion) during a
micro stretch continuum’s deformation process without experiencing microshearing or breathing
microrotation. Three translational, three microrotational, and one rotational degree of freedom
make up the seven degrees of freedom in microstretch bodies.

1.2 Literature Review
Eringen was the first to develop a description of the micropolar fluids and microstretch elastic
body theory [2,3]. Based on the concept of microstretch elasticity developed by Eringen, many
researchers have examined various issues. Isothermal bending of microstretch elastic plate
was studied by Ciarletta [1]. Microstretch elastic solids’ equilibrium theory was studied by
Iesan and Pompei [4]. In a microstretch solid, Kumar et al. [6] investigated the plane strain
problem. Utilizing plate vibration data, Kiris and Inan [5] calculated the microstretch elastic
moduli of various materials. Marin [7] developed the idea of domain of influence of microstretch
materials. Many authors have researched various issues relating to plane waves and surface
waves in isotropic microstretch elastic materials. For instance, in his study of the movement
of a microrotation and microstretch wave in a nonlocal medium, Nowinski [8] also specialized
the general field equations governing the movement of a nonlocal surface wave. Sharma et
al. [10] took into account the issues with Rayleigh surface wave propagation in an isotropic
microstretch continua with effects of micropolarity and relaxation times. The plane waves
in an isotropic electromicrostretch elastic solid were investigated by Sharma et al. [9]. At
a microstretch solid/fluid interface, Singh et al. [12] took into account the reflection and
transmission of dilatation waves. Singh and Goyal [11] solved the problem for plane wave
propagation in transversely isotropic microstretch elastic solid and computed the speeds and
reflection coefficients of reflected waves.
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1.3 Contribution
The objective of the present paper is to conduct an investigation how rotation affects the
propagation of plane waves in a transversely isotropic microstretch medium. The graphs of
speeds and amplitude ratios are drawn against the angle of propagation for different values
of rotation parameter and the variations of speeds and amplitude ratios are compared when
rotation is present and absent.

1.4 Structure of the Paper
This paper is organised as follows: Basic equations of motion are taken in Section 2. These
fundamental equations are developed and solved for plane wave solutions in Section 3. Section 4
is the reflection from stress free surface. Results are discussed in Section 5 and, conclusions are
drawn in Section 6.

2. Governing Equations
We consider a homogeneous transversely isotropic microstretch solid half-space which rotates
uniformly with angular velocity

Ω=Ωn̂,

where Ω is a rotation parameter and n̂ is a unit vector representing the direction of axis of
rotation.

2.1 Equations of Motion
The following equations make up the linear theory of microstretch elasticity:

t ji, j = ρ[ui + {Ω× (Ω×u)}i + (2Ω×u)i], (2.1)

mik,i +ϵi jkti j = ρ jφ̈k, (2.2)

πk,k −σ= j0φ̈k . (2.3)

2.2 The Constitutive Equations

ti j = A i jrsers +Bi jrsκrs +D i jΦ+Fi jkγk , (2.4)

mi j = Brsi j ers +Ci jrsκrs +E i jΦ+G i jkγk , (2.5)

σ= D i j e i j +E i jκi j +γΦ+hkγk , (2.6)

πk = Fi jke i j +G i jkκi j +hkφ+ A∗
k jγ j , (2.7)

e i j = u j,i +ϵi jkφk, κi j =φ j,i, γ j =Φ, j, (2.8)

Here, the force stress tensor is ti j , the couple stress tensor is mi j , the density is ρ,
the components of the displacement vector are ui , the alternating tensor is ϵi jk and the
components of the microrotation vector are φi . The microstretch function is represented by
πk, the microstress function Φ, the microinertia by σ, the microinertia by j, the microstretch
inertia by j0. The kinematic strain measures are e i j , κi j and ζk and constitutive coefficients
are A i jrs, Bi jrs, Ci jrs, D i j , E i j , Fi jk , G i jk , hi , A i j , κi j . Latin subscripts cover the entire range
of integers (1,2,3). Commas before subscripts indicate partial differentiation in relation to
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the corresponding Cartesian coordinates. A superposed dot indicates partial differentiation
with respect to time t. The following symmetry relations are taken to hold for the constitutive
coefficients and the microinertia tensor.

A i jrs = Arsi j, Bi jrs = Brsi j, Ci jrs = Crsi j, A i j = A ji, κi j = κ ji . (2.9)

3. Formulation of the Problem and Plane Wave Solutions
We take into account a rotating transversely isotropic micostretch elastic solid half-space. When
we consider the free surface as the origin of coordinate system, the negative z axis is seen to be
pointing normally into the half-space, which is denoted by the symbol z ≤ 0. We believe that
the medium is transversely isotropic in the sense that the isotropic planes are perpendicular to
the z-axis.

u = (u1,0,u3) and φ= (0,φ2,0).

Using equations (2.4) to (2.9) in equations (2.1) to (2.3), we obtain

A11
∂2u1

∂x2 + (A13 + A56)
∂2u3

∂x∂z
+ A55

∂2u1

∂z2 +K1
∂φ2

∂z
+D11

∂Φ

∂x
= ρ

[
∂2u1

∂t2 −Ω2u1 +2Ω
∂u3

∂t

]
, (3.1)

A66
∂2u3

∂x2 + (A13 + A56)
∂2u1

∂x∂z
+ A33

∂2u3

∂z2 +K2
∂φ2

∂x
+D33

∂Φ

∂z
= ρ

[
∂2u3

∂t2 −Ω2u3 −2Ω
∂u1

∂t

]
, (3.2)

B77
∂2φ2

∂x2 +B66
∂2φ2

∂z2 −K1
∂u1

∂z
−K2

∂u3

∂x
−χφ2 = ρ j

∂2φ2

∂t2 , (3.3)

A∗
11
∂2Φ

∂x2 + A∗
33
∂2Φ

∂z2 −ζΦ−D11
∂u1

∂x
−D33

∂u3

∂z
= j0

∂2Φ

∂t2 . (3.4)

We seek the plane wave solutions of equations (3.1) to (3.4) as follows:

{u1,u3,φ2,Φ}= {A,B,C,D}exp{ik(xsinθ+zcosθ−vt)}, (3.5)

where ω= kv is the angular frequency, θ is the angle of wave propagation direction with vertical
axis, k is the wave number, and v is wave speed.

We achieve four homogeneous equations in A, B, C, and D that have a non-trivial solution
if equation (3.5) is used in equations (3.1) to (3.4),

A∗Λ4 −B∗Λ3 +C∗Λ2 −D∗Λ+E∗ = 0 , (3.6)

where

Λ= ρv2,

A∗ = P2 +Q2,

B∗ = P(D1 +D2)+P2(D∗
3 +D∗

4 )+Q2(D∗
3 +D∗

4 ),

C∗ = D1D2 +P(D1D∗
3 +D2D∗

3 +D1D∗
4 +D2D∗

4 )+P2D∗
3 D∗

4 +Q2D∗
3 D∗

4 −P(D11D∗
11 sin2θ

+K1K∗
1 cos2θ+D33D∗

33 cos2θ+K2K∗
2 sin2θ)+Q(D11D∗

33 sinθ cosθ−iD33D∗
11 sinθ cosθ)−L2,

D∗ = D1D2D∗
3 +D1D2D∗

4 +P(D1D∗
3 D∗

4 +D2D∗
3 D∗

4 )− [P(D11D∗
11D∗

3 +K2K∗
2 D∗

4 )

+D11D∗
11D2 +K2D∗

1 K∗
2 ]sin2θ− [P(D33D∗

33D∗
3 +K1K∗

1 D∗
4 )+D33D∗

33D1
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+K1D2K∗
1 ]cos2θ+L(D11D∗

33 +K1K∗
2 +K2K∗

1 +D∗
11D33)sinθ cosθ−2(D∗

3 +D∗
4 ),

E∗ = D1D2D∗
3 D∗

4 − (D11D∗
11D2D∗

3 +K2K∗
2 D1D∗

4 )sin2θ− (K1K∗
1 D2D∗

4 +D1D∗
3 D33D∗

33)cos2θ

+L(D11D∗
33D∗

3 +K1K∗
2 D∗

4 +K2K∗
1 D∗

4 +D∗
11D33D∗

3 )sinθ cosθ− (K1K∗
2 D∗

11D33

+K∗
1 K2D11D∗

33)sin2θ cos2θ+K1K∗
1 D33D∗

33 cos4θ+K2K∗
2 D11D∗

11 sin4θ−L2(D∗
3 D∗

4 ),

where
D1 = A11 sin2θ+ A55 cos2θ, D2 = A66 sin2θ+ A33 cos2θ, D3 = B77 sin2θ+B66 cos2θ,

D4 = A∗
11 sin2θ+ A∗

33 cos2θ, L = (A13 + A56)sinθ cosθ, D∗
11 =

D11

j0k2 ,

D∗
33 =

D33

j̄0k2
, K∗

1 = K1

jk2 , K∗
2 = K2

jk2 ,

D∗
3 = D3

j
+ χ

jk2 , Du∗ = Du
j̄0

+ ξ

j̄0k2
, j̄0 = j0

ρ
,

Ω∗ = Ω

kv
, P = 1+Ω∗2, Q = 2iΩ∗.

The four roots of equation (3.6) shows the speed of propagation of Coupled Longitudinal
Displacement (CLD) wave, Coupled Longitudinal Microstretch (CLM) wave, Coupled Transverse
Displacement (CTD) wave and Coupled Transverse Microrotational (CTM) wave.

4. Reflection from a Stress Free Surface
The mechanical boundary condition, which includes the normal components of force stress,
the tangential components of force stress, the tangential components of couple stress and the
microstretch function, all vanish at z = 0.

t33 = 0, t31 = 0, m32 = 0, π3 = 0 , (4.1)

where
t33 = A13u1,1 + A33u3,3 +D33Φ, t31 = A56u3,1 + A55u1,3 +K1Φ2, m32 = B66φ2,3,
π3 = h3Φ+ A∗

31Φ,1 + A∗
33Φ,3 .

Z = 0 x

CTM

CTD

CLM

CLD
z

CLD

Transversely isotropic
rotating microstretch
elastic half space

O

q0

q1
q2

q3

q4

Figure 1. Geometrical representation
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The appropriate displacement components u1,u3, microrotation vector φ2 and microstress
function Φ are taken as

u1 = A0 exp{ik1(xsinθ0 + zcosθ0 −v1t)}

+
4∑

j=1
A j exp{ik j(xsinθ j + zcosθ j −v j t)}, (4.2)

u3 = p1A0 exp{ik1(xsinθ0 + zcosθ0 −v1t)}

+
4∑

j=1
p j A j exp{ik j(xsinθ j + zcosθ j −v j t)}, (4.3)

φ2 = q1A0 exp{ik1(xsinθ0 + zcosθ0 −v1t)}

+
4∑

j=1
q j A j exp{ik j(xsinθ j + zcosθ j −v j t)}, (4.4)

Φ= r1A0 exp{ik1(xsinθ0 + zcosθ0 −v1t)}

+
4∑

j=1
r jA j exp{ik j(xsinθ j + zcosθ j −v j t)}, (4.5)

where vi (i = 1,2,3,4) are the actual velocity of the CLD, CTD, CLM, and CTM waves,
respectively. These displacement components, the microrotation component, and the microstress
function fulfill the boundary requirements (4.1) if following Snell’s law hold.

k1 sinθ0 = k1 sinθ1 = k2 sinθ2 = k3 sinθ3 = k4 sinθ4, (4.6)

k1v1 = k2v2 = k3v3 = k4v4 (4.7)

and four equations in reflection coefficients are derived as a non-homogeneous system,
4∑

j=1
ai jZ j = bi, i = 1,2, . . . ,4 , (4.8)

where

Z j = A j

A0
, j = 1,2, . . . ,4

are amplitude ratios of reflected CLD, CTD, CTM and CLM waves respectively, and

a1 j =
iA13 sinθ0 − ip j A33

(
v1
v j

)√
1−sin2θ0

(
v j
v1

)2 +D33

(
r j
k1

)
iA13sinθ0 + ip1A33 cosθ0 +D33

r1
k1

, j = 1,2, . . . ,4, (4.9)

a2 j =
ip j A56 sinθ0 − iA55

(
v1
v j

)√
1−sin2θ0

(
v j
v1

)2 +K1

(
q j
k1

)
ip1A56sinθ0 + iA55 cosθ0 +K1

q1
k1

, j = 1,2, . . . ,4, (4.10)

a3 j =
q j

(
v1
v j

)√
1−sin2θ0

(
v j
v1

)2

q1 cosθ0
, j = 1,2, . . . ,4, (4.11)
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a4 j =
ir j A∗

31 sinθ0 − ir j A∗
33

(
v1
v j

)√
1−sin2θ0

(
v j
v1

)2 +h3

(
r j
k1

)
ir1A∗

31sinθ0 + ir1A∗
33 cosθ0 +h3

r1
k1

, j = 1,2, . . . ,4, (4.12)

b1 =−1, b2 =−1, b3 = 1, b4 =−1. (4.13)

The above theoretical analysis minimizes to transversely isotropic microstretch elastic case
when Ω∗ = 0, P = 1, Q = 0. The analysis cited above also boils down to transversely isotropic
micropolar elastic case when Ω∗ = 0, P = 1, Q = 0, D11 = 0, D33 = 0.

5. Results and Discussion
In this study, the physical constants of a transversely isotropic composite material that is
modelled as a microstretch medium are used to calculate plane wave speeds and reflection
coefficients of reflected waves while meeting the inequalities between these constants:

A11 = 17.8∗1011 Nm−2, A33 = 18.43∗1011 Nm−2, A13 = 7.59∗1011 Nm−2,

A56 = 1.89∗1011 Nm−2, A55 = 4.357∗1011 Nm−2, A66 = 4.42∗1011 Nm−2,

A65 = 4.32∗1011 Nm−2, B77 = 0.278∗1010 Nm−2, B66 = 0.268∗1010 Nm−2,

A∗
11 = 0.03∗1011 Nm−2, A∗

33 = 0.04∗1011 Nm−2, D11 = 0.062∗1010 Nm−2,

D33 = 0.063∗1010 Nm−2, ρ = 1.74∗103 Nm−2, j = 0.196m2 .
For the above physical constants, the biquadratic equation (3.6) is solved mathematically for
the phase speeds of the plane waves and equation (4.8) is also solved numerically to calculate
the amplitude ratios of all reflected waves for different values of rotation rate.

5.1 Speeds of Plane Waves
The speeds of reflected CLD, CTD, CLM and CTM waves are plotted in Figures 2-5 versus the
angle of incidence θ0, respectively. The red,green and blue lines of reflected waves corresponds
to Ω∗ = 0, 0.1 and 0.2, respectively.

Figure 2. Speed of CLD wave versus angle of propagation for various values of rotation parameter
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Figure 3. Speed of CTD wave versus angle of propagation for various values of rotation parameter

Figure 4. Speed of CLM wave versus angle of propagation for various values of rotation parameter

Figure 5. Speed of CTM wave versus angle of propagation for various values of rotation parameter
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When Ω∗ = 0,
(a) the speed of the reflected CLD wave decreases monotonically from 141738 m/s at θ0 = 0 to

121845 m/s at θ0 = 89.433;

(b) the speed of the reflected CTD wave increases monotonically from 85260.5 m/s at θ0 = 0 to
87951.4 m/s at θ0 = 89.9544;

(c) the speed of the reflected CLM wave increases monotonically from 12383.4 m/s at θ0 = 0
to 16431.6 m/s at θ0 = 48.6498 and then decreases monotonically to the value 13372.4 m/s
at θ0 = 89.7653;

(d) the speed of the reflected CTM wave decreases monotonically from 35731.9 m/s at θ0 = 0
to its minimum value 31515.2 m/s at θ0 = 64.4635 and then increases slowly upto the
value 31783 m/s at θ0 = 90.

When rotation is present, (i.e. for Ω∗ = 0.1 and 0.2), the speed variations of all reflected waves
are similar to that for Ω∗ = 0 for the corresponding wave, but the values of the speed enhance
at each incident angle.

5.2 Amplitude Ratios of Plane Waves
Amplitude ratio versus angle of incidence θ0 of reflected CLD, CTD, CLM and CTM waves are
plotted in Figures 6-9, respectively. The red, green and blue lines of reflected waves corresponds
to Ω∗ = 0,0.1,0.2, respectively.
When Ω∗ = 0,

(a) the amplitude ratio of the reflected CLD wave increases gradually from 2.02537 at
θ0 = 42.6624 and then increases to the value 1.01725 at θ0 = 89.4444.

(b) the amplitude ratio of the reflected CTD wave gradually increases from 1.77854 at θ0 = 0
to 1.87543 at θ0 = 36.4 and subsequently decreases up to the value θ0 = 89.7023;

Figure 6. Amplitude ratio of CLD wave versus angle of propagation for various values of rotation
parameter
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Figure 7. Amplitude ratio of CTD wave versus angle of propagation for various values of rotation
parameter

Figure 8. Amplitude ratio of CLM wave versus angle of propagation for various values of rotation
parameter

Figure 9. Amplitude ratio of CTM wave versus angle of propagation for various values of rotation
parameter
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(c) the amplitude ratio of the reflected CLM wave gradually increases from 0.01062 at
θ0 = 0.00572952 to 0.0122211 at θ0 = 31.358 and then declines to the value 0 at
θ0 = 889.7997;

(d) the amplitude ratio of the reflected CLM wave declines monotonically from 0.505699 at
θ0 = 0 to 0 at θ0 = 90.

When rotation is present (i.e. for Ω∗ = 0.1 and 0.2), the amplitude ratio changes of all reflected
waves are identical to those for Ω∗ = 0 but the values of the amplitude ratio enhance for each
incident angle.

6. Conclusions
This article examines how rotation affects the speed and amplitude ratio of reflected waves.
By observing the graphical behaviour, the following significant conclusions can be drawn.

(i) The value of speeds at each angle of incidence is altered by rotation, but the speed variation
is unaffected.

(ii) The order of the speeds of different plane waves is determined for the current numerical
example as (vCLD > vCTD > vCLM > vCTM).

(iii) With the increase in the rotation parameter value, the speeds of the CLD and CTD waves
fluctuate, while those of the CLM wave fall and those of the CTM wave rise.

(iv) As the value of the rotation parameter rises, the speeds of the CLD and CTD waves
increase, whereas the speeds of the CLM wave and CTM wave decrease.

Appendix
The formulas for p j ,

q j
k j

and r j
k j

, j = 1,2, . . . ,4 are as follows:

p j =
A1 j +B1 j

M1 j +N1 j
,

q j

k j
= −i(A2 j +D2 j)

M1 j +N1 j
,

r j

k j
= −i(A3 j +B3 j)

M1 j +N1 j
,

where

A1 j = K1K∗
1 jD33

[
1−sin2θ0

( v j

v1

)2] 3
2

−K∗
1 jK2D11 sin2θ0

( v j

v1

)2
√√√√1−sin2θ0

( v j

v1

)2

, j = 1,2, . . . ,4,

B1 j =−R jL jD11 sinθ0
v j

v1
−P jR jD33

√√√√1−sin2θ0

( v j

v1

)2

, j = 1,2, . . . ,4,

M1 j =−K2K∗
2 jD11 sin3θ0

( v j

v1

)3

+K1K∗
2 jD33 sinθ0

( v j

v1

)√√√√1−sin2θ0

( v j

v1

)2

, j = 1,2, . . . ,4,

N1 j = R jQ jD11 sinθ0
v j

v1
+R jL jD33

√√√√1−sin2θ0

( v j

v1

)2

, j = 1,2, . . . ,4,
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A2 j = K∗
1 jQ jD11 sinθ0

( v j

v1

)√√√√1−sin2θ0

( v j

v1

)2

+K∗
1 jL jD33

[
1−sin2θ0

( v j

v1

)2]
, j = 1,2, . . . ,4,

B2 j = L jK∗
2 jD11 sin2θ0

( v j

v1

)3

+P jK∗
2 jD33 sinθ0

( v j

v1

)√√√√1−sin2θ0

( v j

v1

)2

, j = 1,2, . . . ,4,

A3 j = K1K∗
1 jQ j

[
1−sin2θ0

( v j

v1

)2]
+K∗

2 jK2P j sin2θ0

( v j

v1

)2

, j = 1,2, . . . ,4,

B3 j = (K1K∗
2 j +K2K∗

1 j)L j sinθ0

( v j

v1

)√√√√1−sin2θ0

( v j

v1

)2

+ (L2
j −P jQ j)R j, j = 1,2, . . . ,4,

P j = ρv2
j − A11 sin2θ0

( v j

v1

)2

− A55

[
1−sin2θ0

( v j

v1

)2]
,

Q j = ρv2
j − A66 sin2θ0

( v j

v1

)2

− A55

[
1−sin2θ0

( v j

v1

)2]
,

R j = ρv2
j −

B77

j
sin2θ0

( v j

v1

)2

− B66

j

[
1−sin2θ0

( v j

v1

)2]
− ξ

jk j2
,

L j = (A13 + A56)sinθ0

( v j

v1

)√
1−sin2θ0

( v j

v1

)2

,

K∗
1 j =

K1

jk2
j
, K∗

2 = K2

jk2
j

.
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