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Abstract. One new approximate analytical method called Ananthaswamy-Sivasankari method for
third order boundary value problems is applied to acquire the approximate solutions to some physical
science problems, particularly Magnetohydrodynamic (MHD) casson fluid flow and MHD boundary
layer flow analytically. The numerical and approximate analytical solutions to these equations are then
compared and the results demonstrate a very good agreement. The resulting approximate analytical
expressions are provided in an explicit and closed form. The outcomes demonstrated that the new
approximate analytical method is more practical and simple to understand. Furthermore, a graphic
interlining of the obtained findings is provided.
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1. Introduction
Recent years researchers have shown a tremendous interest to do research in the domain of
MHD boundary layer flow due to its wide range of applications in engineering and industries
such as drawing of plastic films, extrusion processes in plastic and metal industries. Ariel [3]
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examined an approximate solution for the flow with suction at the stagnation point. The analytic
solution for MHD boundary layer flows in Casson fluid across a stretching/shrinking sheet
involving wall mass transfer was discovered by Battacharyya et al. [4]. Bhattacharyya [5] used
the finite difference technique to investigate the effects of heat source and sink on such a
steady two-dimensional MHD boundary layer motion and thermal radiation over a sheet that
is shrinking and has wall mass suction. Crane [6] developed a closed form solution for steady
two-dimensional stretching in which the velocity on the boundary is away from the fixed point
and proportional to the distance.

Fang and Zhang [7] obtained the closed and exact analytical expression of the governing
Navier-Stokes equations for the MHD flow across a periodically shrinking surface. The unstable
viscous fluid flow along a continuously moving shrinking surface having mass suction was
studied in Fang et al. [9]. The heat transfer parameters from the shrinking sheet problem with
a linear velocity were described by Fang and Zhang [8]. The MHD flow of a second-grade fluid
through a shrinking sheet was taken into consideration by Hayat et al. [10] who also came
out with the analytical solution for the problem using HAM and series solution. Ibrahim and
Makinde [11] presented a boundary layer analysis for Casson nanofluid flow over a stretching
sheet with slip and convective boundary under MHD stagnation point flow.

The analysis of MHD boundary layer flow past a stretching plate with heat transfer has
been explored by Jhankal and Kumar [12]. Using a shooting technique and a Runge-Kutta-
Fehl berg integration strategy, Khan et al. [14] evaluated the non-aligned hydro magnetic
stagnation point flow of a water base variable viscosity nanofluid across a convectively heated
stretching sheet with radiative heat numerically. For the purpose of resolving a non-linear third
order boundary value problem across an infinite domain, Kravnchenko and Yablonskii [15,16]
used the Dirichlet series. In a stretching surface, the set of equations for boundary layer was
addressed in Kudenatti et al. [17]. Magyari and Keller [19] evaluated and compared the heat
and mass-transfer properties of the boundary layers upon an exponentially stretching constant
surface to the well-known results of power-law models.

A numerical study of the free convection flow in a nanofluid caused by the motion of a
constantly stretching sheet has been carried out by Makinde and Aziz [21]. Sakiadis [31]
conducted ground-breaking research in this field by examining the free convection fluid
flow on such a continually stretching surface at constant speed. The work of Sakiadis was
empirically validated in Tsou et al. [32]. After reviewing the work of Sakiadis, other researchers
[20,23] generalized the surface boundary conditions. Makinde [22] have described the effects of
convective cooling on nanofluid flow over an unsteady stretching sheet. The viscous flow caused
only by a shrinking sheet was researched by Micklavčič and Wang [25].

With the aid of HAM, Liao [18] found a brand-new branch of solutions for boundary-layer
flows over a stretched impermeable wall. In order to determine how a casson fluid would flow
in the region of a stagnation point toward a stretching sheet, Mustafa et al. [26] computed the
analytical solution. Nadeem et al. [28] have explored the MHD flow for a casson fluid across
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an exponentially shrinking sheet using ADM. The thin film flow on a fluctuating shrinking
sheet through it with a porous media with dynamic viscosity was highlighted by Nadeem
and Awais [27]. Under a thin liquid layer of a modulating stretching sheet, Noor et al. [29]
used Homotopy analysis method to study heat transfer and MHD flow. Noor et al. [30] used a
straightforward non-perturbative approach to deal with MHD viscous flow caused there by a
shrinking sheet. Wang [34] addressed the problem that Stagnation flow onto a shrinking sheet.
The exact solutions to the steady free state Navier-Stokes equations were established by Wang
[33].

The primary goal of this present paper is to introduce a different approximate analytical
method known as Ananthaswamy-Sivasankari Method for third order boundary value problems.
By applying this approach to a few third order non-linear boundary value problems that exist
in physical science, like MHD casson fluid flow and MHD boundary layer flow. The analytical
results are compared with the numerical results. Additionally, the data are plotted to highlight
how different physical characteristics affect the outcome.

2. Ananthaswamy-Sivasankari Method (ASM)
For the purpose of evaluating the third order non-linear ordinary differential equations, a
new method called Ananthaswamy-Sivasankari method (ASM) is introduced. One can use it to
resolve both linear as well as non-linear differential equations. This method can also be easily
extended to resolve some other non-linear such boundary value problems in physical, chemical
and biological sciences, especially for MHD boundary layer flow problems in physical science.
However the proposed new method is applicable to boundary value issues. For the differential
equation and its derivatives, additional boundary conditions can be generated.

2.1 Basic Concept of ASM
Let us consider the non-linear boundary value problem

q : f (y, y′, y′′, y′′′)= 0, (2.1)

where q represents the third order non-linear differential equation such that y= y(x, c,d, . . .)
in which c,d are given parameters and x ∈ [L,U] can be finite with the following boundary
conditions

At x = L, y(x)= yL0 (or) y′(x)= yL1 (or) y′′(x)= yL2

At x =U , y(x)= yU0 (or) y′(x)= yU1 (or) y′′(x)= yU2

}
(2.2)

Assume that the approximate analytical solution of the non-linear equations is an exponential
function of the form

y(x)= l+meax +ne−ax . (2.3)
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The unknown coefficients l,m and n are obtained by solving the non-linear differential equations
as follows:

y(L)= l+meaL +ne−aL = yL0

y′(L)= ameaL −ane−aL = yL1

y′′(L)= a2meaL +a2ne−aL = yL2

 (2.4)

y(U)= l+meaU +ne−aU = yU0

y′(U)= ameaU −ane−aU = yU1

y′′(U)= a2meaU +a2ne−aU = yU2

 (2.5)

Equations (2.4) and (2.5) may be used to get the unknown parameters l,m and n.
The following non-linear differential equations are obtained by substituting an equation

(2.3) into the equation (2.1).

q : f (y(x, l,m,n,a, c,d), y′(x, l,m,n,a, c,d), y′′(x, l,m,n,a, c,d), y′′′(x, l,m,n,a, c,d))= 0. (2.6)

This equation is valid at x where x ∈ [L,U]. Solving the equation (2.6), the unknown parameter
a can be obtained in terms of given parameters c and d.

3. Examples
In this portion, some examples are solved analytically using ASM and the results are derived
very clearly to explain the new method more effective. Examples 3.1 and 3.2 are based on the
MHD fluid flow which occurs in physical science.

3.1 Example
Consider the dimensionless form of MHD casson fluid flow over a permeable
stretching/shrinking Sheet described in [4,7,24] and is given by:(

1+ 1
β

)
f ′′′+ f f ′′− f ′2 −M2 f ′ = 0 . (3.1)

The dimensionless boundary conditions are given as follows:

For shrinking case

f (0)= fw, f ′(0)=−1, f ′(∞)= 0 . (3.2)

For stretching case

f (0)= fw, f ′(0)= 1, f ′(∞)= 0 . (3.3)

Skin friction co-efficient: The dimensionless local skin friction coefficient is given by

R e1/2
x C f =

(
1+ 1

β

)
f ′′(0) (3.4)

where Re is the local Reynolds number.

3.1.1 Approximate Analytical Solution using ASM
Case 1: For shrinking sheet
The following is an approximate analytical solution to equation (3.1) that satisfies the boundary
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condition as follows:

f (η)= l+meaη+ne−aη , (3.5)

f ′(η)= meaη−ne−aη . (3.6)

Utilizing the boundary conditions in equation (3.2), we obtain the value of the parameters l,m
and n as follows:

l = fw − 1
a

, m = 0 and n = 1
a

. (3.7)

Thus, the equation (3.5), becomes

f (η)= fw − 1
a
+ 1

a
e−aη (3.8)

Now by using the equation (3.8) into an equation (3.1) and on simplification, we get

−
(
1+ 1

β

)
a2e−aη+

(
fw − 1

a
+ 1

a
e−aη

)
(−ae−aη)− e−2aη−M2(−e−aη)= 0. (3.9)

Now taking η= 0, equation (3.9) becomes

−
(
1+ 1

β

)
a2 − fwa−1+M2 = 0 . (3.10)

On solving the equation (3.10), we get the value of the parameter a and is given by

a =
− fwβ±

√
f 2
wβ

2 +4(M2β2 +β2 +M2β+β)

2(β+1)
. (3.11)

Hence an approximate analytical solution of the momentum equation (3.1) is obtained by
substituting an equation (3.11) into an equation (3.8) as follows:

f (η)= fw − 1
a
+ 1

a
e−aη (3.12)

where a is obtained in the equation (3.11).

Case 2: For stretching sheet
The following is an approximate analytical solution to equation (3.1) that satisfies the boundary
condition as follows:

f (η)= l+meaη+ne−aη , (3.13)

f ′(η)= meaη−ne−aη . (3.14)

Utilizing the boundary conditions in an equation (3.3), we obtain the value of the parameters
l,m and n as follows:

l = fw + 1
a

, m = 0 and n = −1
a

. (3.15)

Thus, the equation (3.13), becomes

f (η)= fw + 1
a
− 1

a
e−aη . (3.16)

Now by using the equation (3.16) into an equation (3.1) and on simplification, we get(
1+ 1

β

)
a2e−aη+

(
fw + 1

a
− 1

a
e−aη

)
(ae−aη)− e−2aη−M2(e−aη)= 0 . (3.17)
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Now taking η= 0, equation (3.17) becomes(
1+ 1

β

)
a2 + fwa−1−M2 = 0 . (3.18)

On solving the equation (3.18), we get the value of the parameter a and is given by

a =
− fwβ±

√
f 2
wβ

2 +4(M2β2 −β2 +M2β−β)

2(β+1)
. (3.19)

Hence an approximate analytical solution of the momentum equation (3.1) is obtained by
substituting an equation (3.19) into an equation (3.16) as follows:

f (η)= fw + 1
a
− 1

a
e−aη . (3.20)

where a is obtained in the equation (3.19).

3.2 Example
Consider the problem of MHD boundary layer flow and heat transfer past a shrinking with
wall mass suction. With the use of similarity transformation, the following is the transformed
non-linear ordinary differential equations presented in [13]:

f ′′′+ f f ′′− f ′2 −M f ′ = 0 , (3.21)

θ′′+Pr( f θ′−λθ)= 0 . (3.22)

The transformed boundary conditions are given by:
f (0)= S, f ′(0)=−1, θ(0)= 1 at η= 0

and f ′(η)→ 0, θ(η)→ 0 as η→∞

}
(3.23)

Skin friction coefficient and Nusselt number
The dimensionless skin friction coefficient is given by:

C f = Re−
1
2 f ′′(0) . (3.24)

The dimensionless Nusselt number is given by

Nu =−Re
1
2θ′(0) . (3.25)

where Re is the local Reynolds number.

3.2.1 Approximate Analytical Solution of Momentum Equation Using ASM
The following is an approximate analytical solution to equation (3.21) that satisfies the boundary
condition as follows:

f (η)= l+meaη+ne−aη , (3.26)

f ′(η)= meaη−ne−aη (3.27)

Utilizing the boundary conditions in equation (3.23), we obtain the value of the parameters l,m
and n as follows:

l = S− 1
a

, m = 0 and n = 1
a

. (3.28)
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Thus, the equation (3.26), becomes

f (η)= S− 1
a
+ 1

a
e−aη . (3.29)

Now by using the equation (3.29) into an equation (3.21) and on simplification, we get

−a2e−aη+
(
S− 1

a
+ 1

a
e−aη

)
(ae−aη)− e−2aη+M(e−aη)= 0 . (3.30)

Now taking η= 0, equation (3.30) becomes

−a2 +Sa−1+M = 0 . (3.31)

On solving the equation (3.31), we get the value of the parameter a and is given by

a =±S+
p

S2 −4−4M
2

. (3.32)

Hence an approximate analytical solution of the momentum equation (3.21) is obtained by
substituting an equation (3.32) into an equation (3.29) as follows:

f (η)= S− 1
a
+ 1

a
e−zη , (3.33)

where a is obtained in the equation (3.32).

3.2.2 Approximate Analytical Solution of Energy Equation using HAM ([1,2])
After substituting the equation (3.33) into an equation (3.22), we get the transformed energy
equation is as follows:

θ′′+Pr
(
S− 1

a
+ 1

a
e−aη

)
θ′−Prλθ = 0 . (3.34)

The Homotopy for the equation (3.34) is given by

(1− p)
[
θ′′−Prλθ

]= hp
[
θ′′+Pr

(
S− 1

a

)
θ′−Prλθ+ Pr

a
e−aηθ′

]
. (3.35)

The approximate analytical solution of the equation (3.34) is as follows:

θ = θ0 + pθ1 + p2θ2 + . . . . (3.36)

The initial approximations for equation (3.35) is given by
θ0(0)= 1 and θi(0)= 0, i = 1,2,3, . . .

θ0(∞)→ 0 and θi(∞)→ 0, i = 1,2,3, . . .

}
(3.37)

Substituting the equation (3.36) into an equation (3.35) and comparing the coefficients of the
powers of p, we get the following equations:

p0 : θ′′0 −Prλθ0 = 0 , (3.38)

p1 : θ′′1 −Prλθ1 − [θ′′0 −Prλθ0]= h
[
θ′′0 +Pr

(
S− 1

a

)
θ′0 −Prλθ0 + Pr

a
e−aηθ′0

]
. (3.39)

Solving the eqns. (3.38) and (3.39), and using the initial approximations equation (3.37), we get
the following results.

θ0 = e−Bη , (3.40)

θ1 = De−Bη+Cxe−Bη+De−(a+B)η , (3.41)
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where

B =
p

Prλ , (3.42)

C = −1
2

hPr
(
S− 1

a

)
, (3.43)

D = −BhPr
a[(a+B)2 −Prλ]

. (3.44)

According to HAM technique, we have

θ = lim
p→1

θ(η)= θ0 +θ1 . (3.45)

Hence an approximate analytical solution of the energy equation (3.22) is obtained by
substituting the eqns. (3.40) and (3.41) into an equation (3.45), as follows:

θ(eta)= e−Bη+De−Bη+Cxe−Bη+De−(a+B)η , (3.46)

where B,C and D are obtained in eqns. (3.42), (3.43) and (3.44).

4. Results and Discussion
In this section, we have discussed about the graphical representation for various dimensionless
parameters involved in the obtained analytical results in Examples 3.1 and 3.2.

For Example 3.1. Figures 1, 2, 3 represents the comparison between the analytical solution
using eqns. (3.12) and (3.20) with the numerical solution presented in [20] for the velocity f ′(η).
Figures 4 and 5 indicates the skin friction coefficient versus the dimensionless parameter fw.

Figure 1 illustrates that the velocity profile f ′(η) with the dimensionless axial coordinate
η of numerous values of magnetic parameter M and some fixed values of β and fw. For both
shrinking and stretching sheet, by increasing the value of M the velocity decreases. Figure 2
demonstrates that the velocity profile f ′(η) with the dimensionless axial coordinate η of various
values of suction/injection parameter fw and some fixed values ofβ and M. For both Shrinking
and Stretching sheet, by increasing the value of fw the velocity decreases. Figure 3 shows
that the velocity profile f ′(η) with the dimensionless axial coordinate η of various values of
casson parameter β and some fixed values of fw and M. For both shrinking and stretching
sheet, by increasing the value of β the velocity decreased. Figure 4 depicts the local skin
friction coefficient using equation (3.4) with the dimensionless parameter fw in Stretching
sheet for distinct values of magnetic parameter M and casson parameter β. From Figure 4,
it is clear that the dimensionless skin friction coefficient increases by increasing M and falls
by rising β. Figure 5 interlines the local skin friction coefficient utilizing equation (3.4) with
the dimensionless parameter fw in Shrinking sheet for several values of magnetic parameter
and casson parameterβ. From Figure 4, it is evident that the skin friction coefficient rises by
increasing M and decreases by rising β.
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Figure 1. Dimensionless velocity profile f ′(η) with the dimensionless axial coordinate η of various values
of M and some fixed values of β and fw

Figure 2. Dimensionless velocity profile f ′(η) with the dimensionless axial coordinate η of various values
of fw and some fixed values of β and M
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Figure 3. Dimensionless velocity profile f ′(η) with the dimensionless axial coordinate η of different
values of β and certain fixed values of fw and M

Figure 4. Dimensionless local skin friction coefficient with the dimensionless parameter fw in Stretching
sheet for distinct values of M and β

For Example 3.2. Figures 6 and 7 shows the comparison between the analytical solution using
equation (3.33) with the numerical result reported in [13] for the velocity f ′(η). Figures 8, 9
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and 10 displays the comparison between the analytical solution using equation (3.46) with the
numerical result reported in [13] for the temperature θ(η). Figure 11 depicts the skin friction
f ′′(0) versus the dimensionless magnetic parameter M. Figure 12 displays the Nusselt Number
θ′(0) versus the dimensionless parameter λ.

Figure 5. Dimensionless local skin friction coefficient with the dimensionless parameter fw in Shrinking
sheet for several values of M and β

Figure 6. Dimensionless velocity f ′(η) with the dimensionless axial coordinate η for different values of
M and in some fixed amounts of S
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Figure 7. Dimensionless velocity f ′(η) with the dimensionless axial coordinate η for multiple values of S
and in some fixed amounts of M

Figure 8. Dimensionless temperature θ(η) with the dimensionless axial coordinate η for varying values
of λ and in some specified amounts of S, Pr and M
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Figure 9. Dimensionless temperature θ(η) with the dimensionless axial coordinate η for various amounts
of M and in some particular amounts of S, Pr and λ

Figure 10. Dimensionless temperature θ(η) with the dimensionless axial coordinate η for distinct values
of S and in certain specific amounts of M, Pr and λ
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Figure 11. Dimensionless skin friction f ′′(0) with the dimensionless magnetic parameter M for various
values of S

Figure 12. Dimensionless Nusselt Number θ′(0) with the dimensionless heat source/sink parameter λ
for several values of Pr and in some particular values of M and S
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Table 1. Comparison of the dimensionless skin friction coefficient using equation (3.4) and the numerical
result presented in [5,24] for numerous values of fw

Analytical solution Numerical solution Error %

2 2.4142136 2.414214 0.000017

3 3.3027756 3.302776 0.000013

4 4.2360679 4.236068 0.000002

Average error percentage 0.000011

Figure 6 represents the velocity f ′(η) with the dimensionless axial coordinate η for different
values of the magnetic parameter M and in some fixed amounts of S. From this figure, the
velocity raises when the value of M is increased. Figure 7 represents the velocity f ′(η) with the
dimensionless axial coordinateηfor different values of the suction parameter S and in some
fixed amounts of M and by raising the value of S, the velocity increases. Figure 8 shows the
temperature θ(η) with the dimensionless axial coordinate η for different values of the heat
source/sink parameter λ and in some fixed amounts of S, Pr and M. It can be seen from this
figure that, by raising the value of λ, the velocity decreases. Figure 9 interlines the temperature
θ(η) with the dimensionless axial coordinate η for different values of M and in some fixed
amounts of S, Pr and λ and the velocity decreased by raising the value of the dimensionless
parameter M. Figure 10 indicates the temperature θ(η) with the dimensionless axial coordinate
η for different values of S and in some fixed amounts of M, Pr and λ. As per this graph, the
velocity decreases as the value of the dimensionless parameter S raises. Figure 11 depicts the
dimensionless skin friction C f using equation (3.24) with the dimensionless magnetic parameter
M for various values of S. From this figure, it is clear that by raising the parameter S the
dimensionless skin friction increases. Figure 12 displays the Nusselt number Nu using equation
(3.25) with the dimensionless parameter λ for several amounts of the Prandtl number Pr and
in some fixed values of M and S. According to this figure, it is obvious that by raising the
parameter Pr the Nusselt number increases.

5. Conclusion
In this current work, the approximate solutions to some physical science problems such as
MHD Casson fluid flow and MHD boundary layer flow were found by one new approximate
analytical technique called Ananthaswamy-Sivasankari method for third order boundary value
problems analytically. The precision of the analytical solution was compared to the numerical
solution to these equations, and there was a significant agreement. The explicit and closed form
of the approximate analytical result was stated. According to the findings, the new method is
more effective and simpler to implement. Also, the results obtained are plotted graphically. This
method can be easily extended to solve higher order non-linear boundary value problems.
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Appendix A: Basic Concept of the Homotopy Analysis Method ([1,2])
Consider the following differential equation:

N[u(t)]= 0 , (A.1)

where N is a nonlinear operator, t denotes an independent variable, u(t) is an unknown
function. For simplicity, we ignore all boundary or initial conditions, which can be treated in the
similar way. By means of generalizing the conventional Homotopy method, Liao constructed the
so-called zero-order deformation equation as:

(1− p)L[ϕ(t; p)−u0(t)]= phH(t)N[ϕ(t; p)], (A.2)

where p ∈ [0,1] is the embedding parameter, h ̸= 0 is a nonzero auxiliary parameter, H(t) ̸= 0 is
an auxiliary function, L an auxiliary linear operator, u0(t) is an initial guess of u(t), ϕ(t; p) is
an unknown function. It is important to note that one has great freedom to choose auxiliary
unknowns in HAM. Obviously, when p = 0 and p = 1, it holds:

ϕ(t;0)= u0(t) and ϕ(t;1)= u(t), (A.3)

respectively. Thus, as p increases from 0 to 1, the solution ϕ(t; p) varies from the initial guess
u0(t) to the solution u(t). Expanding ϕ(t; p) in Taylor series with respect to p, we have:

ϕ(t;0)= u0(t)+
+∞∑
m=1

um(t)pm , (A.4)

where

um(t)= 1
m!

∂mϕ(t; p)
∂pm

∣∣p=0 (A.5)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary
function are so properly chosen, the series (A.4) converges at p = 1 then we have:

u(t)= u0(t)+
+∞∑
m=1

um(t). (A.6)

Differentiating (A.2) for m times with respect to the embedding parameter p, and then setting
p = 0 and finally dividing them by m!, we will have the so-called mth-order deformation
equation as:

L[um −χmum−1]= hH(t)ℜm (⃗um−1), (A.7)

where

ℜm (⃗um−1)= 1
(m−1)!

∂m−1N[ϕ(t; p)]
∂pm−1 (A.8)

and

χm =
{

0, m ≤ 1,
1, m > 1.

(A.9)

Applying L−1 on both side of equation (A.7), we get

um(t)= χmum−1(t)+hL−1[H(t)ℜm( ⃗um−1)]. (A.10)
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In this way, it is easily to obtain um for m ≥ 1, at mth order, we have

u(t)=
M∑

m=0
um(t) . (A.11)

When M → +∞, we get an accurate approximation of the original equation (A.1). For the
convergence of the above method we refer the reader to Liao [18]. If equation (A.1) admits
unique solution, then this method will produce the unique solution.
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