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1. Introduction
The direct inverting of matrices is useful for many applications, including solving systems of
linear equations. But the effectiveness of the algorithms for this task is related to the size and
the algebraic structure of the matrices to be inverted (Reuter and Hill [17]), which prompts us
to use approximate iterative solutions instead (Saad [18]).

Our problem is to solve the linear system Mx = b. As is well known, if M is a non-singular
matrix, the solution is given by x = M−1b. This approach suffers from a practical point of view
of digital instability (Cormen et al. [8]). For this reason, we will try several methods to calculate
the inverse of the matrix M, we will compare them in terms of the time spent and calculation
precision.

A well-known method is then the LU decomposition (Cholesky decomposition in the case of
symmetric positive definite matrices) is numerically stable and has the added benefit of being
faster in practice, we will also study is Schur’s complement decomposition method, but using a
Divide and Conquer (D&C) strategy (Abu-Saman and El-Okur [2], Björck [5], and Cormen et
al. [8]).
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In Divide and Conquer, we solve a problem recursively, applying three steps to each level of
recursion:

• Divide the problem into two or more sets of sub-problems that represent smaller cases of
the same problem.

• Conquer the sub-problems by solving them recursively. If the sizes of the sub-problem are
small enough, then just solve it directly.

• Combine the solutions of sub-problems into solution of original problem.

In linear algebra, several researchers have used a Divide and Conquer strategy. Abu-
Samman [1], Abu-Samman and El-Okur [2], Heller [13], and Mahfoudhi [16] were interested in
the inversion of matrices using Divide and Conquer algorithms and others like Andersen et al.
[3], Dongara [11], Georgiev and Waśniewski [12], and Yang et al. [21] used the same strategy
to decompose matrices using Cholesky and LU decomposition. There are also those who have
suggested several algorithms for solving linear systems and eigenvalue problems (Cleary and
Dongarra [6], and Climent et al. [7]).

Our objective here is to design sequential algorithms based on the Divide and Conquer
strategy to invert matrices and to solve linear systems using previous research in the field.
We suggest a new Divide and Conquer algorithm for solving linear systems based on Schur’s
complement decomposition (DC_SchurSol). Then we adopt the forward substitution and back
substitution methods (Björck [5]) to get tow Divide and Conquer algorithms (DC_LTriSol,
DC_UTriSol) for solving lower and upper triangular linear systems.

This paper is organized as follows. In the first section, we present Divide and Conquer
models for inverting matrices using LU, Cholesky, and Schur’s complement decomposition In
the second section we present some algorithms for solving linear systems by dividing them into
small linear sub-systems.

Numerical examples are given to show the efficiency of the algorithms. The algorithms are
simulated to work with dense, structural, and sparse matrices. The computational results of
(the D&C algorithms) are compared to the MATLAB inverses obtained using built-in functions
and the iterative method (CG) (Björck [5], Lyche [15], and Saad [18]) for solving linear systems.

2. Divide and Conquer Methods for Matrix Inversion
We can summarize the steps of Divide and Conquer strategy in the following algorithm:

Algorithm 1: Divide and Conquer algorithm structure (DC)

Step 1: input the problem P;
Step 2: If P small enough return the solution of P;
Step 3: else divide P into sub-problems P1,P2, . . . ,Pk, k > 1;

Apply DC to each of these sub-problems;
Step 4: return Combine(DC(P1),DC(P2), . .,DC(Pk)).

2.1 Schur’s Complement Decomposition
Let M be a n×n block matrix given as:

M =
(
A B
C D

)
, (2.1)
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where A is p× p matrix and D is q× q matrix, with p+ q = n.
We assume that A is invertible, the Schur complement of A in M is S = D −CA−1B, the
factorization of M is written as follows: (Cottle [9], Sousedík et al. [19], 1)

M =
(
A B
C D

)
=

(
I BA−1

0 I

)(
A 0
0 S

)(
I 0

A−1C I

)
, (2.2)

where I represent the identity matrix.
If S is an invertible matrix then the inverse of the matrix M is:

M−1 =
(
A B
C D

)−1

=
(

I 0
−A−1C I

)(
A−1 0
0 S−1

)(
I −BA−1

0 I

)
(2.3)

=
(
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
. (2.4)

If M is a symmetric positive definite matrix, so that the matrices A and S = D−CA−1CT are
both symmetric and positive definite matrices (Cormen et al. [8]). Therefore, the inverses A−1

and S−1 exist. Then, we have:

M =
(
A CT

C D

)
=

(
I CT A−1

0 I

)(
A 0
0 S

)(
I 0

A−1C I

)
, (2.5)

and

M−1 =
(

I 0
−A−1C I

)(
A−1 0
0 S−1

)(
I −CT A−1

0 I

)
(2.6)

=
(
A−1 + A−1CTS−1CA−1 −A−1CTS−1

−S−1CA−1 S−1

)
. (2.7)

So, to invert a matrix M of size n, it suffices only to invert two matrices A and S of size p and
q respectively (see Algorithm 2).

2.2 Divide and Conquer Method for Inverting Triangular Matrix
In 1973, Heller used a Divide and Conquer strategy to develop a recursive algorithm for
triangular matrix inversion (Heller [13]). The main idea is to split a triangular matrix T and its
inverse B (both of size n) into 3 sub-matrices of size n

2 as in Mahfoudhi [16].
The procedure is repeated recursively until we reach sub-matrices of size 1. Thus, the

inversion of the triangular matrix T of size n consists of inverting two triangular sub-matrices
of size n

2 .
Let T be a lower triangular matrix of size n partitioned as follows:

T =
(
T1 0
T2 T3.

)
. (2.8)

By equation (2.4) we obtain (see Datta [10], and Laub [14]):

T−1 =
(

T−1
1 0

−T−1
3 T2T−1

1 T−1
3

)
. (2.9)

Note that T1 and T3 are also lower triangular matrices, so they can be inverted recursively.

1J. Gallier, The Schur complement and symmetric positive semidefinite (and definite) matrices, preprint (2019),
URL: https://www.cis.upenn.edu/~jean/schur-comp.pdf.
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Algorithm 2: D&C to invert matrix using Schur’s complement decomposition (DC_SchurInv)

Step 1: input M, with M is n×n symmetric positive definite matrix;
Step 2: if n==1

V = 1/M;
else

if mod(n,2)== 0;
p = q = n/2;

else
p = (n−1)/2;
q = n− p;

splitting M as M =
(

Ap CT

C Dq

)
;

let V a new n×n matrix with: V = M−1 =
(

Kp R
T Uq

)
;

compute S where S = D−CA−1CT

compute recursively A−1 and S−1 as;
A−1 =DC_SchurInv(A)
S−1 =DC_SchurInv(S) and set Up = S−1

compute:
Z = A−1CT S−1;
R =−Z and set T = RT ;
Kp = A−1 +ZCA−1 ;

Step 3: reshape the sub-matrices K ,R,T and U in V as: V =
(

Kp R
T Uq

)
.

Algorithm 3: D&C method to invert a lower triangular matrix (DC_LTMInv)

Step 1: input T, with T is n×n non-singular triangular matrix and B its inverse.
Step 2: if n == 1;

B = 1/T;
else

if mod(n,2)== 0;
p = q = n/2;

else
p = (n−1)/2;
q = n− p;

splitting T as T =
(
T1 0
T2 T3

)
, where T1 and T3 of size p and q respectively;

let B a new matrix with B = T−1 =
(
B1 0
B2 B3

)
, where B1 and B3 of size p and q respectively

compute recursively T−1
1 and T−1

3 as:
B1 =DC_LTMInv(T1);
B3 =DC_LTMInv(T3);

compute
C =−B3 ∗T2;
B2 = C∗B1;

Step 3: combine the sub-matrices B1,B2 and B3 in B as: B =
(
B1 0
B2 B3

)
.

For the upper triangular matrix T =
(

T1 T2
0 T3

)
we have:

T−1 =
(

T−1
1 −T−1

1 T2T−1
3

0 T−1
3

)
. (2.10)
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Now the Divide and Conquer algorithm (see Algorithm 3) to invert a lower triangular matrix
(DC_LTMInv) can be suggested, which can be easily modified to obtain an algorithm for inverting
an upper triangular matrix (DC_UTMInv).

Remark 2.1. We have modified the algorithm above to invert n×n matrices in which n is not
exactly a power of 2.

2.3 Cholesky and LU Decomposition
Using the LU decomposition, we can write the matrix M as a product of two triangular matrices
L and U as the form (Banerjee and Roy [4], and Björck [5]):

M = LU (2.11)

with L is a lower triangular matrix has 1 in its diagonal entries, and U is an upper triangular
matrix.

We can use this decomposition to find the inverse of M as: M−1 =U−1L−1, such that L−1

and U−1 can be found using Algorithm 3.
In the case where M is a symmetric positive definite matrix, Cholesky decomposition can

be used to factorize M as follows: M = LLT , where L is a lower triangular matrix. This can be
used to invert the matrix M as: M−1 = L−TL−1.

In [3], [12], algorithms are proposed for LU and Cholesky decomposition using the Divide
and Conquer method. This will be used in the following algorithms for inverting matrices.

Algorithm 4: D&C method to invert a matrix using the LU decomposition (DC_LUInv)

Step 1: input M, with M is an n×n non-singular matrix;
Step 2: decompose M as M = LU with L and U are lower and upper triangular matrix respectively;
Step 3: compute L−1 and U−1 as follows:

L−1 =DC_LTMInv(L);
U−1 =DC_UTMInv(U);

Step 4: finally M−1 =U−1L−1.

Algorithm 5: D&C method to invert matrix using Cholesky’s decomposition (DC_CholInv)

Step 1: input M, with M is an n×n symmetric positive definite matrix;
Step 2: decompose M as M = LLT with L is a lower triangular matrix;
Step 3: compute L−1 and L−T as follows:

L−1 =DC_LTMInv(L);
L−T = (L−1)T ;

Step 4: finally M−1 = L−T L−1.

2.4 Numerical Experiment
This section presents our implementation experiments for different versions of the matrix
inversion described above (DC_SchurInv, DC_LUInv, DC_CholInv and inv). The experiments use
the MATLAB library (The MathWords2), remember that “inv” refers to a matrix inversion
command in MATLAB.

2The MathWorks, MATLAB User’s Guide, Version 8.1.0.604, (R2013a), URL: https://www.mathworks.com.
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Example 2.1. Consider the n×n matrix given by:

m1, j = 1, j = 1, . . . ,n;

mi,1 = 1, i = 1, . . . ,n;

mi, j = mi−1, j +mi, j−1, i = 2, . . . ,n; j = 2, . . . ,n.

For n = 8 and n = 16 the matrix M is symmetric positive definite (Abu-Saman and El-Okur [2]),
if n = 8 we have:

M =



1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8
1 3 6 10 15 21 28 36
1 4 10 20 35 56 84 120
1 5 15 35 70 126 210 330
1 6 21 56 126 252 462 792
1 7 28 84 210 462 924 1716
1 8 36 120 330 792 1716 3432


. (2.12)

Now we invert this matrix using the algorithms above and comparing them in term of the
relative residual error computing using the formula: max(∥I − AA−1∥,∥I − A−1A∥)/∥A∥.

Table 1. Computations of the residual relative error for invert the matrix (2.12) shows that the Divide
and Conquer algorithms give the inverse accurately and without errors, but using inv gives
completely wrong matrices in the case where n = 16

Matrix size
max(∥I − AA−1∥,∥I − A−1 A∥)/∥A∥

DC_SchurInv DC_LUInv DC_CholInv inv(M) by MATLAB

8 0.0000e+000 0.0000e+000 0.0000e+000 97.0529e-012

16 0.0000e+000 0.0000e+000 0.0000e+000 11.9169e+000

Example 2.2. We want to invert the Poisson matrix M of size n given by (Lyche [15]):

aii = 4, i = 1, . . . ,n,

ai+1,i = ai,i+1 =−1, i = 1, . . . ,n−1, i ̸= m,2m, . . . , (m−1)m,

ai+m,i = ai,i+m =−1, i = 1, . . . ,n−m,

ai j = 0, otherwise,

where m =p
n, for n = 9 we have:

M =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


. (2.13)

M is a symmetric positive definite matrix (Lyche [15]) then we can use the Cholesky and Schur’s
complement decomposition.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 707–719, 2023
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Table 2. Timing of Poisson matrix inversion using Divide and Conquer methods

Matrix size
Time (second)

DC_SchurInv DC_LUInv DC_CholInv inv(M) by MATLAB

1600 0.9208 1.0657 0.5875 0.1368
2500 1.2967 2.7775 1.3961 0.3621
3600 2.7470 6.505837 3.5275 0.7616
4900 5.8463 16.2494 7.9505 3.3009
6400 9.8727 32.1943 15.8321 5.5159
8100 18.6535 72.1769 35.3100 9.4356

Table 3. Computations of the residual relative error for different size of Poisson matrix by Divide and
Conquer methods

Matrix size
max(∥I − AA−1∥,∥I − A−1 A∥)/∥A∥

DC_SchurInv DC_LUInv DC_CholInv inv(M) by MATLAB

1600 4.6623e-15 6.1873e-15 5.9117e-15 1.0367e-14
2500 7.5625e-15 1.0766e-14 9.6850e-15 1.6379e-14
3600 1.2089e-14 1.5832e-14 1.4552e-14 2.6336e-14
4900 1.6318e-14 2.3232e-14 1.9394e-14 3.2289e-14

Example 2.3. In Table 4 and Table 5, we will compare the inversion algorithms of random
symmetric positive definite matrices of different size, in terms of time and relative residual
error.

Table 4. Timing of matrix inversion using Divide and Conquer methods

Matrix size
Time (second)

DC_SchurInv DC_LUInv DC_CholInv inv(M) by MATLAB

1600 0.5347 1.7477 0.7307 0.6763
2500 1.5560 6.4414 3.2744 2.6516
3600 3.8330 15.4444 7.7602 6.5551
4900 7.7059 27.9299 13.5771 13.8499
6400 21.0229 67.9501 30.9712 32.5047
8100 107.6112 311.0037 130.0791 62.8132

Table 5. Computations of the residual relative error for different size of dense symmetric positive definite
matrix by Divide and Conquer methods

Matrix size
max(∥I − AA−1∥,∥I − A−1 A∥)/∥A∥

DC_SchurInv DC_LUInv DC_CholInv inv(M) by MATLAB

1600 1.2031e-11 1.1493e-13 8.1339e-14 2.1338e-08
2500 9.2392e-10 7.1712e-12 7.1002e-12 4.0617e-06
3600 1.7450e-12 7.9153e-15 8.7412e-15 2.8820e-08
4900 1.0742e-11 5.7758e-14 3.0743e-14 7.3678e-08
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Discussion

The Divide and Conquer algorithms treat all matrices in the same way and are not affected
by their algebraic properties. This makes it very effective in dense and poorly preconditioned
matrices.

We notice that Shure’s algorithm (DC_SchurInv) is faster in the dense matrices despite
inverting two matrices at each level of recursion, but it is less accurate than Cholesky algorithm
(DC_CholInv).

The problem with Divide and Conquer algorithms is the memory because it has to keep two
matrices of size n in all the algorithm steps. This makes it slower in the case of large matrices,
as we have noticed that it takes about 40% of the total execution time in the combine.

3. Solving Linear Systems

In this section we would like to solve a linear system:

Mx = b (3.1)

with M being an n×n symmetric positive-definite matrix and x,b two vectors in R.

3.1 Divide and Conquer Method Using Schur’s Complement Decomposition

Our approach is to divide the linear system (3.1) of size n into two similar linear systems of size
p and q with p+ q = n, using Schur’s complement decomposition M = LDLT as equation (2.5)
so D = L−1ML−T .

Using our decomposition, we obtain

Mx = b ⇔ ML−TLT x = b (3.2)

⇔ L−1ML−TLT x = L−1b (3.3)

⇔ D y= b̃ (3.4)

We put b̃ = L−1b and y= LT x, where x is the desired solution vector. Now, we split the matrix
D and the vectors y and b̃ as follows:

D =
(
D1 0
0 D2

)
, y=

(
y1
y2

)
, b̃ =

(
b̃1
b̃2

)
. (3.5)

By replacing the previous in (3.4), we obtain the following result:

D y= b̃ ⇔
(
D1 0
0 D2

)(
y1
y2

)(
b̃1
b̃2

)
(3.6)

⇔
{

D1 y1 = b̃1,
D1 y1 = b̃2.

(3.7)

Hence, to solve the linear systems (3.1) of size n, it is sufficient to solve only two linear
sub-systems independent of size p and q with p+ q = n which can be solved recursively and in
parallel.
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Algorithm 6: D&C to solve linear systems using Schur’s complement (DC_SchurSol)

Step 1: input M,b, with M is n×n symmetric positive-definite matrix and b ∈Rn ;
Step 2: if n == 1;

x = b/M;
else

if mod(n,2)== 0;
p = q = n/2;

else
p = (n−1)/2;
q = n− p;

decompose M into M = LDLT using equation (2.5);

as: M =
(

I L1
0 I

)(
D1 0
0 D2

)(
I 0

L1 I

)
, where D1 and D2 of size p and q respectively

put b̃ = L−1b and splitting D and b̃ as:

D =
(
D1 0
0 D2

)
, b̃ =

(
b̃1
b̃2

)
;

solving in parallel the two sub linear systems D1 y1 = b̃1 and D2 y2 = b̃2 recursively as:
y1 =DC_SchurSol(D1, b̃1);
y2 =DC_SchurSol(D2, b̃2);

Step 3: combine the solution of two sub linear system as y=
(

y1
y2

)
;

Step 4: compute x = L−T y.

Remark 3.1. In the algorithm (6), it is easy to find L−1 by using equation (2.10). Observe that:

L−1 =
(
I L1
0 I

)−1

= I −L1
0 I . (3.8)

3.2 Divide and Conquer Method for Triangular Linear Systems
We want to solve the following linear system Tx = b with T is an n×n lower triangular matrix
and x,b two vectors of size n.

We split T, x and b as:

T =
(
T1 0
T2 T3

)
, x =

(
x1
x2

)
, b =

(
b1
b2

)
. (3.9)

So

Tx = b ⇔
(
T1 0
T2 T3

)(
x1
x2

)(
b1
b2

)
(3.10)

⇔
{

T1x1 = b1,
T2x1 +T3x2 = b2,

(3.11)

⇔
{

T1x1 = b1,
T3x2 = b2 −T2x1.

(3.12)

T1 and T3 are also lower triangular matrices, so we can solve the two systems in (3.12)
recursively.
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Algorithm 7: D&C method to solve lower triangular linear systems (DC_LTriSol)

Step 1: input T, with T is an n×n lower triangular matrix and b ∈Rn ;
Step 2: if n == 1;

x = b/T;
else

if mod(n,2)== 0;
p = q = n/2;

else
p = (n−1)/2;
q = n− p;

else decompose T and b as: T =
(

T1 0
T2 T3

)
, b =

(
b1
b2

)
;

solving two sub linear systems T1x1 = b1 and T3x2 = b2 −T2x1 recursively as:
x1 =DC_TriSol(T1,b1);
b̃2 = b2 −T2x1;
x2 =DC_TriSol(T3, b̃2);

Step 3: combine the solution of two sub linear system as x =
(
x1
x2

)
.

Remark 3.2. The previous algorithm can be modified easily if T is an upper triangular matrix.
To find an algorithm for solving an upper triangular systems (DC_UTriSol).

3.3 Divide and Conquer Method to Solve Linear Systems Using LU and Cholesky Decomposition
In Section 2.3, we saw the LU decomposition of a matrix. In this section, we will use it to solve
a linear system. Let M be a n×n non-singular matrix, and x,b two vectors of size n.

The LU decomposition divides the solution of a linear system into two independent steps
(Björck [5], and Van Loan [20]):

• The decomposition M = LU .

• Solution of the systems Ly= b and Ux = y from the following:

Mx = b ⇔ LUx = b; (3.13)

⇔ Ly= b; with Ux = y. (3.14)

We have the following algorithm:

Algorithm 8: D&C method to solve linear systems using LU decomposition (DC_LUSol)

Step 1: input M, with M is an n×n non-singular matrix, and b a vector of size n;

Step 2: decompose M as M = LU , with L and U are lower and upper triangular matrix respectively;
Step 3: solve the two sub linear systems Ly= b then Ux = y as follows:

y=DC_LTriSol(L,b);
x =DC_UTriSol(U,y).

Remark 3.3. In the case of symmetric positive definite matrices we use Cholesky decomposition
M = LLT , and follow the same previous steps with taking U = LT , and we get the algorithm:
DC_CholSol.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 707–719, 2023
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3.4 Numerical Experiment
We now try to test the efficiency of the Divide and Conquer algorithms in solving the linear
system Mx = b with M is an n×n symmetric positive definite matrix, comparing the iterative
methods (CG) (Björck [5], and Lyche [15]).

Example 3.1. Let M be the Poisson matrix defined in the equation (2.13). It is clear that it is
sparse, and b = (1,1, . . . ,1)T .

Table 6. The timing and the residual relative error of the solution of different size of the Poisson linear
system Mx = b, by the Divide and Conquer methods

Matrix size Time (second) ∥Mx−b∥
DC_SchurSol DC_CholSol CG DC_SchurSol DC_CholSol CG

3600 2.6116 0.7999 0.0293 5.8806e-12 5.4534e-12 2.2507e-11
4900 4.7465 1.1429 0.0316 9.0667e-12 8.6216e-12 4.1059e-11
6400 7.9830 1.5576 0.0403 1.4414e-11 1.3024e-11 5.4827e-11
8100 12.9552 2.0846 0.0558 2.0786e-11 1.8538e-11 9.4044e-11
10000 18.9420 3.3982 0.0750 2.9764e-11 2.6081e-11 1.3063e-10

Example 3.2. Now for the randomly selected symmetric positive definite matrices, which are
mostly dense.

Table 7. The timing and the residual relative error of the solution of different size of the dense linear
system Mx = b, by the Divide and Conquer methods

Matrix size
Time (second) ∥Ax−b∥

DC_SchurSol DC_CholSol CG DC_SchurSol DC_CholSol CG

900 0.4572 0.2330 3.4579 2.4306e-09 5.8513e-11 3.4349e-10
1600 1.1124 0.5265 18.8615 4.6683e-07 3.0280e-09 2.1894e-08
2500 2.0733 1.0856 72.2107 1.0346e-05 1.1068e-07 4.2392e-07
3600 4.3217 2.1937 230.3187 9.0728e-06 7.9475e-08 1.1069e-06
4900 8.3134 4.2590 / 4.1107e-05 7.7785e-07 /
6400 16.2687 7.5213 / 2.2387e-07 1.4287e-09 /
8100 34.0075 14.6121 / 2.8928e-07 3.4490e-09 /

Discussion
We have noticed throughout our study that the Divide and Conquer methods are not affected by
the algebraic properties of matrices as we said earlier, in contrast to iterative methods whose
performance varies from one matrix to another according to its condition number.

In solving linear systems, we notice that the iterative methods are faster in the case of
sparse matrices, but very slow in the case of dense matrices, unlike Divide and Conquer methods
which seem more stable and give more precise results.We point out that the Schur’s algorithm
(DC_SchurSol) can be further accelerated and the execution time reduced by about 45% by
solving linear sub-systems in parallel.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 707–719, 2023



718 Divide and Conquer Methods for Solving Linear Systems: Y. Mezzar and K. Belghaba

4. Conclusion
Using Divide and Conquer methods to directly invert matrices and to solve linear systems
without decomposition will significantly reduce the approximation error. This technique will
also enable calculations of highly sensitive systems. In fact, this technique is really consistent
with parallel computing, which makes it much faster.
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