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1. Introduction
Let N be the set of natural numbers and G ⊆ N. If, G is closed under the addition in N and
0 ∈G and N\G is finite then G is called a numerical semigroup. For all n1,n2, . . . ,ne ∈G it is
denoted by

G = 〈n1,n2, . . . ,ne〉 =
{

e∑
i=1

aini : ai ∈N
}

and

(n1,n2, . . . ,ne)= 1⇔N\G is finite.

Numerical semigroups are also called numerical monoids because numerical semigroups are
commutative monoids.

The numerical semigroup concept raises problems that are easy to understand but not
obvious to solve. This situation caught the attention of 19th century mathematicians Ferdinand
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Frobenius and James Joseph Sylvester [13]. Historically known as the “Frobenius coin problem”,
the problem was originally “what is the largest amount of money that cannot be obtained using
coins that do not have a common divisor?” expressed by the question. In short, “a and b are
natural numbers, p and q are greater than 1 and prime between them; What is the largest
integer that cannot be expressed as a linear combination ap+bq?” The question is known as
the frobenius problem. The solution of this problem for two numbers such as p and q. It is
designated as pq− p− q. This number is represented by F(G) (Rosales and Branco [10]). For
two such numbers, it is stated that exactly how many numbers can be written and unwritten as
the linear combination of p and q from the numbers in the interval [0,F(G)], and the proof of
the theorem related to this is again done by Sylvester [13].

Numerical semigroups have gained importance again in algebra and have found application
in algebraic geometry in particular.

Du Val [5] asked if there was an algebraic expression of the geometric approach he had
made while presenting his article on the Jacobian algorithm and the multiplicity sequence of an
algebraic branchat Istanbul University. Arf, who was attending Du Val’s lecture said that the
computation of Du Val’s characters could be calculated by algebraic means, and after a week he
showed how to do this and the results were published in [1], and later these characters were
called Arf Characters of a curve. Arf’s idea was to calculate what Limpan called later in [9], the
Arf ring closure of the coordinate ring of the curve, and then its value semigroup (which is an
Arf numerical semigroup). The minimal generators of this semigroup are the Arf characters.
Today’s mathematicians are interested in the properties of Arf numerical semigroups.

Arf numerical semigroups are always of maximal embedding dimension (Barucci et al. [3]).
Having a maximal embedding size means that the smallest element in the generator and the
number of elements in the generator are equal. The smallest element in the generator gives
us the multiplicity of the numerical semigroup. García-Sánchez et al. [7] mentioned small
multiplicity Arf numerical semigroups in their article.

In this article, we will talk about small multiplicity of Arf numerical semigroups and RF-
matrices. Then, we will examine small multiplicity of Arf numerical semigroups via RF-matrices.

2. Basic Definitions
Most of the definitions are found in [2], [11] and [8].

Definition 2.1. Let N denote the set of naturals number. The number of elements of a set B
will be denoted by |B|. A subset G ⊆N satisfying

(i) 0 ∈G,
(ii) x, y ∈G ⇒ x+ y ∈G,

(iii) |N\G| <∞
is called a numerical semigroup.

Definition 2.2. The N \G set in option (iii) we mentioned is called the gaps of the numerical
semigroup. After that the gaps set will be denoted by H(G). The number of elements of the set
H(G) tells us the genus of the numerical semigroup G and is denoted by h(G).

Definition 2.3. Let G be a semigroup and B ⊂G. For every g ∈G, if we can write it as a linear
combination of the elements of the set B = {b1,b2, . . . ,bn}, then the set B is called the set of
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generators of the set G and is denoted by G = 〈B〉. If G cannot be generated by any proper subset
of B, then B is called a minimal generator system.

Definition 2.4. The number of elements of the minimal generator system mentioned in
Definition 2.3 is called the embedding dimension of the G numerical semigroup and is denoted
by e(G).

Definition 2.5. Let G be a numerical semigroup. The smallest element of the generator set of
the numerical semigroup G is called the multiplicity of G and is denoted by m(G).

Definition 2.6. Let G be a numerical semigroup. If m(G)= e(G), the numerical semigroup G is
called the semigroup with maximal embedded dimension.

Definition 2.7. Let G be a numerical semigroup. The largest element of the gaps set of the
numerical semigroup G is called the frobenius number.

Definition 2.8. Let G be a numerical semigroup. The smallest integer x given as x+n ∈G and
n ∈N for the numerical semigroup G is called the conductor of G and is denoted by I(G), i.e.,

I(G)= F(G)+1 .

Definition 2.9. Let G be a numerical semigroup. Let’s take an integer x such that x ∈G. If
g ∈G\{0} and x+ g ∈G are, then the integer x is called a pseudo-frobenius number of G. The
set of all pseudo-frobenius numbers of the numerical semigroup G is denoted by PF(G).

Example 2.1. G = {0,4,7,8,9,11, . . .} is a numerical semigroup,
(i) 0 ∈G

(ii) G is closed according to the addition operation, x, y ∈G ⇒ x+ y ∈G

(iii) N\G = {1,2,3,5,6,10}. The set is finite and from Definition 2.1, G is a numerical
semigroup.

Example 2.2. The numerical semigroup given in Example 2.1,
(a) Gaps set and genus: H(G)= {1,2,3,5,6,10} and h(G)= 6

(b) Minimal generator set and embedding dimension: G = 〈4,7,9,〉 and e(G)= 3

(c) Multiplicity: m(G)= 4

(d) Since m(G) ̸= e(G), it is not a maximal embedded dimension

(e) Frobenius number: F(G)= 10

(f) Conductor: I(G)= 11

(g) Pseudo-frobenius number and type: PF(G)= {5,10} and t(G)= 2

Definition 2.10. Let G be a numerical semigroup. If the numerical semigroup G satisfies the
following property, then G is called Arf numerical semigroup [12],

∀ x, y, z ∈G : x ≥ y≥ z =⇒ x+ y− z ∈G .

Lemma 2.1. Let G be a numerical semigroup,

∀ x, y ∈G : x ≥ y=⇒ 2x− y ∈G .
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If the numerical semigroup G satisfies the above property, then G is called Arf numerical
semigroup [4].

Proof. See [4].

Example 2.3. G = 〈3,10,11〉 = {0,3,6,9, . . .} an Arf is a numerical semigroup,

x = 3, y= 3=⇒ 2.3−3= 3 ∈G

x = 6, y= 3=⇒ 2.6−3= 9 ∈G

x = 6, y= 6=⇒ 2.6−6= 6 ∈G

x = 9, y= 3=⇒ 2.9−3= 15 ∈G

x = 9, y= 6=⇒ 2.9−6= 12 ∈G

x = 9, y= 9=⇒ 2.9−9= 9 ∈G

When x ≥ 9, 2x− y ∈G will always be x− y≥ 8. In this case G is an Arf numerical semigroup.

Lemma 2.2. Every Arf numerical semigroup is of maximal embedding dimension [11]. But the
reverse is not true.

Example 2.4. G = 〈3,4,8〉 = {0,3,4,7,8,9,10, . . .} m(G)= e(G)= 3 maximal embedding dimension
but not Arf numerical semigroup,

x = 3, y= 3=⇒ 2.3−3= 3 ∈G

x = 4, y= 3=⇒ 2.4−3= 5 ∉G

G Arf is not a numerical semigroup because 5 is not an element of G.

3. RF -Matrices of Arf Numerical Semigroups With Small Multiplicity
We study Arf numerical semigroups with multiplicity of two, three, four, five and six with
RF-matrices. The RF-matrices of Arf numerical semigroups were calculated by means of the
GAP program [6].

Definition 3.1. Let f ∈PF(G). An e× e matrix A = (ai j) is an RF-matrices of f , if aii =−1 for
every i, ai j ∈N if i ̸= j and for every i = 1, . . . , e,

e∑
j=1

ai jn j = f .

Lemma 3.1. The size of the RF-matrices is determined by the number of elements in the minimal
generator system of the G numerical semigroup.

Example 3.1.
G = 〈4,21,22,23〉 = {0,4,8,12,16,20, . . .}.

Let’s find the RF-matrices of the Arf numerical semigroup G.
To find the RF-matrices, we need to find the elements of the pseudo-frobenius set. In this case,

PF(G)= {x ∈G|x+ g ∈G} .
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Set of gaps of G;

H(G)= {1,2,3,5,6,7,9,10,11,13,14,15,17,18,19} and F(G)= 19

=⇒ PF(G)= {17,18,19}

for f = 19 ∈PF(G),
19= a11.4+a12.21+a13.22+a14.23 and for a11 =−1
19=−1.4+a12.21+a13.22+a14.23

Thus, the first row of the RF-matrices:
[−1 0 0 1

]
.

If f = 19 ∈PF(G),
19= a21.4+a22.21+a23.22+a24.23 and for a22 =−1
19=−1.4+a22.21+a23.22+a24.23

Thus, the second row of the RF-matrices:
[
10 −1 0 0

]
.

If f = 19 ∈PF(G), we obtain
19= a31.4+a32.21+a33.22+a34.23 and for a33 =−1
19= a31.4+a32.21+−1.22+a34.23

Thus, the third row of the RF-matrices:
[
5 1 −1 0

]
.

If f = 19 ∈PF(G), we get
19= a41.4+a42.21+a43.22+a44.23 and for a44 =−1
19= a41.4+a42.21+a43.22+−1.23

Thus, the fourth row of the RF-matrices:
[
0 2 0 −1

]
or

[
5 0 1 −1

]
.

Since the element number of the minimal generator set of the G numerical semigroup is 4,
the RF-matrices will be a 4×4 type matrix,

RF(19)=


−1 0 0 1
10 −1 0 0
5 1 −1 0
0 2 0 −1

 , RF(19)=


−1 0 0 1
10 −1 0 0
5 1 −1 0
5 0 1 −2


Note. An RF-matrices can be written for each element in the pseudo-Frobenius set. These
written matrices are not usually unique.

Definition 3.2. Let G be an Arf numerical semigroup with multiplicity m. Then G is the
minimal generator set (Ap(G,m)\{0}∪ {m}).

Arf numerical semigroup with multiplicity one.
The Arf numerical semigroup with a multiplicity of 1 is just the set of N numbers.

Arf numerical semigroups of multiplicity two:

Propositon 3.1. Any numerical semigroup with a multiplicity of 2 is also an Arf numerical
semigroup. The conductor I(G) = I and the numerical semigroup Arf with multiplicity of 2 is
expressed by G = 〈2, I +1〉 [7].
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Example 3.2. Arf numerical semigroup with multiplicity two,
Frobenius number 5 (conductor 6)

G1 = 〈2,7〉 = {0,2,4,6, . . .}

for RF-matrices PF(G1)= {5},
f = 5 ∈PF(G1), we obtain

RF(5)=
[−1 1

2 −1

]
.

Frobenius number 7 (conductor 8)

G2 = 〈2,9〉 = {0,2,4,6,8, . . .}

for RF-matrices PF(G2)= {7},
f = 7 ∈PF(G2), we get

RF(7)=
[−1 1

8 −1

]
Note. Arf numerical semigroups with multiplicity greater than 3 and 3 cannot be written
explicitly by the conductor alone. The genus is needed to completely determine them [7].
If the Arf property is asuumed, then the Arf numerical semigorup is fully determined by the
multiplicity and the conductor.

Arf numerical semigroups of multiplicity three:

Propositon 3.2. Let I be an integer so that I ≥ 3 and I ̸≡ 1(mod3). Then, the Arf numerical
semigroup G with a multiplicity of 3 and a conductor I can be written as one of the following:
I ≡ 0 or 2(mod3),

(i) G = 〈3, I +1, I +2〉 if I ≡ 0(mod3).

(ii) G = 〈3, I, I +2〉 if I ≡ 2(mod3) [7].

Example 3.3. Arf numerical semigroup with multiplicity three,
Frobenius number 10 (conductor 11)

G3 = 〈3,11,13〉 = {0,3,6,9,11, . . .}

for RF-matrices PF(G3)= {8,10},
f = 8 ∈PF(G3), we get

RF(8)=
−1 0 1

7 −1 0
4 1 −1

 .

Frobenius number 11 (conductor 12)

G4 = 〈3,13,14〉 = {0,3,6,9,12, . . .}

for RF-matrices PF(G4)= {10,11},
f = 10 ∈PF(G4), we obtain

RF(10)=
−1 1 0

3 −1 1
8 0 −1

 .
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Arf numerical semigroups of multiplicity four:

Propositon 3.3. The Arf numerical semigroup with conductor I and multiplicity 4 can be
written as one of the following: I ≡ 0,2 or 3(mod4),

(i) G = 〈4,4a+2, I +1, I +3〉 if I ≡ 0(mod4), for
(
a ∈ {

1, . . . , I
4

})
,

(ii) G = 〈4,4a+2, I +1, I +3〉 if I ≡ 2(mod4), for
(
a ∈ {

1, . . . , I−2
4

})
,

(iii) G = 〈4, I, I +2, I +3〉 if I ≡ 3(mod4) [7].

Example 3.4. Arf numerical semigroup with multiplicity four,
Frobenius number 21 (conductor 22)

G5 = 〈4,6,23,25〉 = {0,4,6,8,10,12,14,16,18,20,22, . . .}

for RF-matrices PF(G5)= {2,19,21},
for f = 2 ∈PF(G5),

RF(2)=


−1 1 0 0
2 −1 0 0
0 0 −1 1
1 0 1 −1

 .

Frobenius number 21 (conductor 22)

G6 = 〈4,10,23,25〉 = {0,4,8,10,12,14,16,18,20,22, . . .}

for RF-matrices PF(G6)= {6,19,21},
f = 6 ∈PF(G6), we get

RF(6)=


−1 1 0 0
4 −1 0 0
1 0 −1 1
2 0 1 −1

 .

Frobenius number 21 (conductor 22)

G7 = 〈4,14,23,25〉 = {0,4,8,12,14,16,18,20,22, . . .}

for RF-matrices PF(G7)= {10,19,21},
f = 10 ∈PF(G7), we obtain

RF(10)=


−1 1 0 0
6 −1 0 0
2 0 −1 1
3 0 1 −1


Frobenius number 22 (conductor 23)

G8 = 〈4,23,25,26〉 = {0,4,8,12,16,20,23, . . .}

for RF-matrices PF(G8)= {19,21,22},
for f = 19 ∈PF(G8),

RF(19)=


−1 1 0 0
4 −1 0 1

11 0 −1 0
5 0 1 −1

 .
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Arf numerical semigroups of multiplicity five:

Propositon 3.4. The Arf numerical semigroup with conductor I and multiplicity 5 can be
written as one of the following, I ≡ 0,2,3 or 4(mod5),

(i) If I ≡ 0(mod5)

(a) G = 〈5, I −2, I +1, I +2, I +4〉, or
(b) G = 〈5, I +1, I +2, I +3, I +4〉

(ii) G = 〈5, I, I +1, I +2, I +4〉 if I ≡ 2(mod5).
(iii) G = 〈5, I, I +1, I +3, I +4〉 if I ≡ 3(mod5).
(iv) If I ≡ 4(mod5)

(a) G = 〈5, I −2, I, I +2, I +4〉, or
(b) G = 〈5, I, I +2, I +3, I +4〉 [7].

Example 3.5. Arf numerical semigroup with multiplicity five,
Frobenius number 29 (conductor 30)

G9 = 〈5,28,31,32,34〉 = {0,5,10,15,20,25,28,30, . . .}

for RF-matrices PF(G9)= {23,26,27,29},
if f = 23 ∈PF(G9),

RF(23)=


−1 1 0 0 0
4 −1 1 0 0
4 0 −1 0 1
11 0 0 −1 0
5 0 0 1 −1

 .

Frobenius number 31 (conductor 32)

G10 = 〈5,32,33,34,36〉 = {0,5,10,15,20,25,30,32, . . .}

for RF-matrices PF(G10)= {27,28,29,31},
f = 27 ∈PF(G10), we get

RF(27)=


−1 1 0 0 0
5 −1 0 1 0
12 0 −1 0 0
5 0 0 −1 1
6 0 1 0 −1

 .

Frobenius number 32 (conductor 33)

G11 = 〈5,33,34,36,37〉 = {0,5,10,15,20,25,30,33, . . .}

for RF-matrices PF(G11)= {28,29,31,32},
for f = 28 ∈PF(G11),

RF(28)=


−1 1 0 0 0
5 −1 0 1 0
5 0 −1 0 1
6 0 1 −1 1

13 0 0 0 −1

 .
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Frobenius number 33 (conductor 34)

G12 = 〈5,32,34,36,38〉 = {0,5,10,15,20,25,30,32,34, . . .}

for RF-matrices PF(G12)= {27,29,31,33},
f = 27 ∈PF(G12), we obtain

RF (27)=


−1 1 0 0 0
5 −1 1 0 0
5 0 −1 1 0
5 0 0 −1 1

13 0 0 0 −1

 .

Arf numerical semigroups of multiplicity six:

Propositon 3.5. The Arf numerical semigroup with conductor I and multiplicity 6 can be
written as one of the following, I ≡ 0,2,3,4 or 5(mod6),

(i) If I ≡ 0(mod6)

(a) G = 〈6, I +1, I +2, I +3, I +4, I +5〉
(b) G = 〈6,6m+2,6m+4, I +1, I +3, I +5〉
(c) G = 〈6,6m+3, I +1, I +2, I +4, I +5〉
(d) G = 〈6,6m+4,6m+8, I +1, I +3, I +5〉

For
(
m = 1,2, . . . , I

6 −1
)

(ii) If I ≡ 2(mod6)

(a) G = 〈6,6n+2,6n+4, I +1, I +3, I +5〉
(b) G = 〈6,6k+3, I, I +2, I +3, I +5〉
(c) G = 〈6,6k+4,6k+8, I +1, I +3, I +5〉

For
(
n = 1,2, . . . , I−2

6 , k = 1,2, . . . , I−2
6 −1

)
(iii) If I ≡ 3(mod6)

G = 〈6,6x+3, I +1, I +2, I +4, I +5〉 for
(
x = 1,2, . . . , I−3

6

)
(iv) If I ≡ 4(mod6)

(a) G = 〈6,6y+2,6y+4, I +1, I +3, I +5〉
(b) G = 〈6,6y+4,6y+8, I +1, I +3, I +5〉

For
(
y= 1,2, . . . , I−4

6

)
(v) If I ≡ 2(mod6)

(a) G = 〈6, I, I +2, I +3, I +4, I +5〉
(b) G = 〈6,6t+3, I, I +2, I +3, I +5〉

For
(
t = 1,2, . . . , I−5

6

)
[7].

Example 3.6. Arf numerical semigroup with multiplicity six,
Frobenius number 29 (conductor 30)

G13 = 〈6,31,32,33,34,35〉 = {0,6,12,18,24,30, . . .}

for RF-matrices PF(G13)= {25,26,27,28,29},
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f = 25 ∈PF(G13), we get

RF (25)=



−1 1 0 0 0 0
4 −1 1 0 0 0
4 0 −1 1 0 0
4 0 0 −1 1 0
4 0 0 0 −1 1

13 0 0 0 0 −1

 .

Frobenius number 29 (conductor 30)

G14 = 〈6,20,22,31,33,35〉 = {0,6,12,18,20,22,24,26,28,30, . . .}

for RF-matrices PF(G14)= {14,16,25,27,29},
f = 14PF(G14), we obtain

RF (14)=



−1 1 0 0 0 0
2 −1 1 0 0 0
6 0 −1 0 0 0
2 0 0 −1 1 0
2 0 0 0 −1 1
3 0 0 1 0 −1

 .

Frobenius number 29 (conductor 30)

G15 = 〈6,14,16,31,33,35〉 = {0,6,12,14,16,18,20,22,24,26,28,30, . . .}

for RF-matrices PF(G15)= {8,10,25,27,29},
for f = 8 ∈PF(G15),

RF (8)=



−1 1 0 0 0 0
1 −1 1 0 0 0
4 0 −1 0 0 0
1 0 0 −1 1 0
1 0 0 0 −1 1
2 0 0 1 0 −1

 .

Frobenius number 29 (conductor 30)

G16 = 〈6,8,10,31,33,35〉 = {0,6,8,10,12,14,16,18,20,22,24,26,28,30, . . .}

for RF-matrices PF(G16)= {2,4,25,27,29},
if f = 2 ∈PF(G16),

RF(2)=



−1 1 0 0 0 0
0 −1 1 0 0 0
2 0 −1 0 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
1 0 0 1 0 −1

 .

4. Conclusions
We mentioned about numerical semigroups and Arf numerical semigroups in this paper. We
stated the necessary and sufficient condition for a numerical semigroup to be an Arf numerical
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semigroup. We Showed how to write the RF-matrices of any Arf numerical semigroup. The RF-
matrices that we investigated in this paper can be studied in all other subjects of numerical
semigroups.
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