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Abstract. Inside this research article, we look at a non-Markovian queue (M/G/1) with second optional
service, disaster events, working breakdowns and working vacation. There are two servers in the
system: a primary and a backup. First Essential Service (FES) is delivered by a primary (backup)
server to all arriving customers. A customer may choose the Second Optional Service (SOS) after
his initial service is finished. When a disaster happens, all customers are made to evacuate the
system, as well as the primary server crashes. The primary server is dispatched to repair at the
first sign of a breakdown and the repair period begins right away. While a primary server is being
repaired, a backup server is servicing customers at such a reduced rate. If a system is inactive
while it is operating, the primary server will just go on vacation. The primary server, which is on
working vacation mode and serving at a reduced rate, subsequently serves the new customers. The
disasters have no effect on working vacation period. The supplementary variable methodology is used
to determine the probability generating function (PGF) of the number of customers throughout typical
peak times, working breakdown periods and working vacation periods, as well as specific metrics of
effectiveness. Some statistical outcomes are shown at the end.
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1. Introduction
Throughout many queueing situations, all arriving customer expects FES and only a subset
of them may need a SOS from the primary (backup) server. An M/G/1 queueing system with a
second optional service was researched by Madan [14]. Many authors, including Kalyanaraman
and Murugan [8], Thangaraj and Vanitha [22], and Santhi and Murugan [18], explored the
single server vacation queueing models with second optional service.

The concept of disasters occurring at random compels everyone to leave at the same moment.
Towsley and Tripathi [24] were the first to present queueing models with disasters. ‘Mass
exodus’ [3], ‘queue flushing’ [24], ‘catastrophes’ [11] and ‘stochastic clearing’ [27] are all terms
used to describe disasters. Jain and Sigman [5] extended the M/G/1 queueing model to include
disasters. Sridharan and Jayasree [20], Lee et al. [12], and Sudhesh [21] are only a few of the
researchers mentioned.

In breakdown queueing model, A great deal of thought goes into the queuing model with an
unstable server. In the majority of studies, the server is supposed to have experienced a difficulty
and is instantaneously sent off to repair. More researchers put forward queueing models with
server breakdown. An M/G/1 queueing system with a repairable server was proposed in Cao and
Cheng [2]. Thiruvengadam [23] discussed about the queueing concept in terms of breakdowns.
Thangaraj and Vanitha [22] investigated single server queueing models with unpredictable
breakdowns. Throughout a working breakdown, the server stops to serve entirely then instead
of serving at a reduced rate. A first queueing model with working breakdown was developed
in Kalidass and Kasthuri [7]. Following that, Kim and Lee [9], Liou [13], Yang and Wu [26]
studied non-Markovian queueing models with working breakdowns.

To use the vacation queueing strategy, the server suspends all operations for the duration of
the vacation. Working vacation is a term that describes when a server operates at a reduced
rate throughout a vacation period. Servi and Finn [19] developed the working vacation queueing
approach, which was then generalised by Kim et al. [10], and Wu and Takagi [25]. Following
that, several authors added working vacation Baba [1], Parveen and Begum [17], and Murugan
and Santhi [16] to their queueing models.

Within that research, we investigate at “A non-Markovian modelling approach (M/G/1)
including second optional service, disasters, working breakdowns and working vacation”.
A primary server and a backup server make up the system. FES is delivered by a primary
(backup) server to all arriving customers. A customer may choose the SOS after his initial
service is finished. As a reaction of the disasters, all existing customers just vanish, prompting
the primary server to crash. The primary server is dispatched to repair in the event of a crash
and instantly, the repair period started. As during repair period, a backup server serves arriving
customers at such a reduced rate; whether there are customers inside the system, the backup
server suddenly stops serving them, and the system is rebooted at its regular service rate by the
primary server. During working vacation period, a primary server serves arriving customers at
such a reduced rate. During vacations and downtime, the server charges a variable tariff.

We are trying to follow that how this study is structured. Overview of the model is
summarised in Section 2. In Section 3, we derive the PGF of the number of customers in the
system using the Kolmogorov equations, server states and supplementary variable technique of

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 987–1002, 2022



A Non-Markovian Queue with Second Optional Service, Disasters, Working. . . : K. Santhi and A. Epsiya 989

remaining service time when the primary server is in typical peak times, working breakdown
and working vacation, respectively. Finally, we looked at some specific cases. In Section 4, the
number of customers in the system and the customer’s waiting time in the system are obtained
as metrics of effectiveness. In Section 5, we perform a statistical outcomes of the model.

2. Overview of a Model
Consider a single server queue whose arrival is governed by a Poisson process with a λ arrival
rate. The FIFO (first in, first out) rule of service discipline governs the system in the research.
When the server seems to be in a typical peak times when there are no customers inside the
system, the server will take a fixed-length vacation. If a customer arrives throughout a vacation,
the primary server provides two types of services: First Essential Service (FES) and Second
Optional Service (SOS) would then serve them at such a reduced rates µwv1 (> 0) and µwv2 (> 0),
which we call it as working vacation period. Let η be the vacation completion rate and let the
FES time Swv1 be exponentially distributed whose probability density function (PDF) is swv1(x)
and its Laplace Stieltjes Transform (LST) is S∗

wv1
(θ). After completion of ES the customer may

opt for the SOS with probability p or the customer may leave the system without taking the SOS
with probability q(p+ q = 1). The SOS time Swv2 be exponentially distributed whose probability
density function (PDF) is swv2(x) and its Laplace Stieltjes Transform (LST) is S∗

wv2
(θ). At the

vacation completion epoch the service to the last customer is lost and the service is restarted in
the typical peak times with different distribution.

If the working vacation ends, then the server resumes the typical peak times with typical
FES rate µrb1 (> 0) and SOS rate µrb2 (> 0) whose typical FES time is Srb1 and SOS time is
Srb2 . Let we denote its PDF by srb1(x) and srb2(x) and its LST by S∗

rb1
(θ) and S∗

rb2
(θ).

Only when the primary server, which is exponentially distributed with rate δ, is operational
do disasters occur. When disaster happens, all customers are compelled to exit the system, and
the primary server crashes. The primary server is dispatched to repair at the first sign of a
breakdown and the repair period begins right away. We assume the backup server provides the
repairing period at quite a reduced ES rate µwb1 (> 0) and SOS rate µwb2 (> 0), which we call it
as working breakdown period and the repair duration is exponentially distributed with rate
γ. If any customer is now in the system for the rest of a repair, the backup halts the provider
as well as the primary server reboots the typical peak duration at the typical service rate. Let
Swb1 denote the working breakdown FES time, its PDF by swb1(x) and its LST by S∗

wb1
(θ) and

let Swb2 denote the working breakdown SOS time, its PDF by swb2(x) and its LST by S∗
wb2

(θ).
Also, the Swv1 , Swv2 , Srb1 , Srb2 , Swb1 and Swb2 are considered to be mutually independent.

3. The Steady State Queue Length Distribution
Let N (t) represent the number of customers in the system at time t, and ζ(t) represent an
indicative random variable defined by
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ζ(t)=



0, if the primary server is idle on working vacation,
1, if the primary server is idle in typical peak time,
2, if the primary server is FES in working vacation,
3, if the primary server is SOS in working vacation,
4, if the primary server is busy FES in typical peak time,
5, if the primary server is busy SOS in typical peak time,
6, if the primary server is down for repair at time t.

Let S0
wv1

(t), S0
wv2

(t), S0
rb1

(t), S0
rb2

(t), S0
wb1

(t) and S0
wb2

(t) signify the remaining service time for
the FES in working vacation, the remaining service time for the SOS in working vacation, FES
in typical peak time, SOS in typical peak time, FES in repair periods and SOS in repair periods
respectively, at time t.

χ(t)=



S0
wv1

(t), if ζ(t)= 2,
S0

wv2
(t), if ζ(t)= 3,

S0
rb1

(t), if ζ(t)= 4,

S0
rb2

(t), if ζ(t)= 5,

S0
wb1

(t), if ζ(t)= 6,

S0
wb1

(t), if ζ(t)= 6.

The process {(N (t),ζ(t),χ(t)); t ≥ 0} is then transformed into a Markov process with the
supplementary variables S0

wv1
(t), S0

wv2
(t), S0

rb1
(t), S0

rb2
(t), S0

wb1
(t) and S0

wb2
(t). The following

limiting probabilities are utilised to calculate the steady state queue length PGF:

V0 = lim
t→∞Pr{N (t)= 0, ζ(t)= 0},

B0 = lim
t→∞Pr{N (t)= 0, ζ(t)= 1},

R0 = lim
t→∞Pr{N (t)= 0, ζ(t)= 6},

Vn,1(x)dx = lim
t→∞Pr{N (t)= n, ζ(t)= 2, x < S0

wv1
(t)< x+dx}, n ≥ 1,

Vn,2(x)dx = lim
t→∞Pr{N (t)= n, ζ(t)= 3, x < S0

wv2
(t)< x+dx}, n ≥ 1,

Bn,1(x)dx = lim
t→∞Pr{N (t)= n, ζ(t)= 4, x < S0

rb1
(t)< x+dx}, n ≥ 1,

Bn,2(x)dx = lim
t→∞Pr{N (t)= n, ζ(t)= 5, x < S0

rb2
(t)< x+dx}, n ≥ 1,

Rn,1(x)dx = lim
t→∞Pr{N (t)= n, ζ(t)= 6, x < S0

wb1
(t)< x+dx}, n ≥ 1,

Rn,2(x)dx = lim
t→∞Pr{N (t)= n, ζ(t)= 6, x < S0

wb2
(t)< x+dx}, n ≥ 1 .

With the previously indicated probabilities, the Kolmogorov equations for the queue length
distribution are provided.

0=−(λ+η)V0 + qV1,1(0)+ qB1,1(0)+B1,2(0)+V1,2(0) , (1)

− d
dx

V1,1(x)=−(λ+η)V1,1(x)+λV0swv1(x)+ qV2,1(0)swv1(x)+V2,2(0)swv1(x) , (2)
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− d
dx

Vn,1(x)=−(λ+η)Vn,1(x)+λVn−1,1(x)+ qVn+1,1(0)swv1(x)+Vn+1,2(0)swv1(x), n ≥ 2 , (3)

− d
dx

V1,2(x)=−(λ+η)V1,2(x)+ pV1,1(0)swv2(x) , (4)

− d
dx

Vn,2(x)=−(λ+η)Vn,2(x)+ pVn,1(0)swv2(x)+Vn−1,2(x), n ≥ 2 , (5)

0=−λB0 +ηV0 +γR0 , (6)

− d
dx

B1,1(x)=−(λ+δ)B1,1(x)+λB0srb1(x)+ qB2,1(0)srb1(x)+B2,2(0)srb1(x)

+ηsrb1(x)
∫ ∞

0
V1,1(y)d y+γsrb1(x)

∫ ∞

0
R1,1(y)d y , (7)

− d
dx

Bn,1(x)=−(λ+δ)Bn,1(x)+λBn−1,1(x)+ qBn+1,1(0)srb1(x)+Bn+1,2(0)srb1(x)

+ηsrb1(x)
∫ ∞

0
Vn,1(y)d y+γsrb1(x)

∫ ∞

0
Rn,1(y)d y, n ≥ 2 , (8)

− d
dx

B1,2(x)=−(λ+δ)B1,2(x)+ pB1,1(0)srb2(x)+ηsrb2(x)
∫ ∞

0
V1,2(y)d y

+γsrb2(x)
∫ ∞

0
R1,2(y)d y , (9)

− d
dx

Bn,2(x)=−(λ+δ)Bn,2(x)+ pBn,1(0)srb2(x)+λBn−1,2(x)+ηsrb2(x)
∫ ∞

0
Vn,2(y)d y

+γsrb2(x)
∫ ∞

0
Rn,2(y)d y, n ≥ 2 , (10)

0=−(λ+γ)R0 + qR1,1(0)+R1,2(0)+δ
∞∑

n=1
Bn,1 +δ

∞∑
n=1

Bn,2 , (11)

− d
dx

R1,1(x)=−(λ+γ)R1,1(x)+λR0swb1(x)+ qR2,1(0)swb1(x)+R2,2(0)swb1(x) , (12)

− d
dx

Rn,1(x)=−(λ+γ)Rn,1(x)+λRn−1,1(x)+ qRn+1,1(0)swb1(x)+Rn+1,2(0)swb1(x), n ≥ 2 , (13)

− d
dx

R1,2(x)=−(λ+γ)R1,2(x)+ pR1,1(0)swb2(x) , (14)

− d
dx

Rn,2(x)=−(λ+γ)Rn,2(x)+λRn−1,2(x)+ pRn,1(0)swb2(x), n ≥ 2 , (15)

where

Vn,i =
∫ ∞

0
Vn,i(y)d y; Bn,i =

∫ ∞

0
Bn,i(y)dy; Rn,i =

∫ ∞

0
Rn,i(y)dy, i = 1,2.

For i = 1,2 the following LSTs and PGFs are used to solve (1)-(15):

V ∗
n,i(θ)=

∫ ∞

0
e−θxVn,i(x)dx; B∗

n,i(θ)=
∫ ∞

0
e−θxBn,i(x)dx; R∗

n,i(θ)=
∫ ∞

0
e−θxRn,i(x)dx

V ∗
i (z,θ)=

∞∑
n=1

V ∗
n,i(θ)zn; B∗

i (z,θ)=
∞∑

n=1
B∗

n,i(θ)zn; R∗
i (z,θ)=

∞∑
n=1

R∗
n,i(θ)zn

Vi(z,0)=
∞∑

n=1
Vn,i(0)zn; Bi(z,0)=

∞∑
n=1

Bn,i(0)zn; Ri(z,0)=
∞∑

n=1
Rn,i(0)zn .
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The following is the normalizing condition based on the notations above:

V0 +B0 +R0 +V ∗
1 (1,0)+V ∗

2 (1,0)+B∗
1 (1,0)+B∗

2 (1,0)+R∗
1 (1,0)+R∗

2 (1,0)= 1 . (16)

We acquire the LSTs from equations (2), (3), (4), (5), (7), (8), (9), (10), (12), (13), (14) and (15).

−(θV ∗
1,1(θ)−V1,1(0))=−(λ+η)V ∗

1,1(θ)+λV0S∗
wv1

(θ)+ qV2,1(0)S∗
wv1

(θ)+V2,2(0)S∗
wv1

(θ) , (17)

−(θV ∗
n,1(θ)−Vn,1(0))=−(λ+η)V ∗

n,1(θ)+λV ∗
n−1,1(θ)+ qVn+1,1(0)S∗

wv1
(θ)

+Vn+1,2(0)S∗
wv1

(θ), n ≥ 2 , (18)

−(θV ∗
1,2(θ)−V1,2(0))=−(λ+η)V ∗

1,2(θ)+ pV1,1(0)S∗
wv2

(θ) , (19)

−(θV ∗
n,2(θ)−Vn,2(0))=−(λ+η)V ∗

n,2(θ)+ pVn,1(0)S∗
wv2

(θ)+λV ∗
n−1,2(θ) , (20)

−(θB∗
1,1(θ)−B1,1(0))=−(λ+δ)B∗

1,1(θ)+λB0S∗
rb1

(θ)+ qB2,1(0)S∗
rb1

(θ)

+B2,2(0)S∗
rb1

(θ)+ηV1,1S∗
rb1

(θ)+γR1,1S∗
rb1

(θ) , (21)

−(θB∗
n,1(θ)−Bn,1(0))=−(λ+δ)B∗

n,1(θ)+λB∗
n−1,1(θ)+ qBn+1,1(0)S∗

rb1
(θ)+Bn+1,2(0)S∗

rb1
(θ)

+ηVn,1S∗
rb1

(θ)+γRn,1S∗
rb1

(θ), n ≥ 2 , (22)

−(θB∗
1,2(θ)−B1,2(0))=−(λ+δ)B∗

1,2(θ)+ pB1,1(0)S∗
rb2

(θ)+ηV1,2S∗
rb2

(θ)+γR1,2S∗
rb2

(θ) , (23)

−(θB∗
n,2(θ)−Bn,2(0))=−(λ+δ)B∗

n,2(θ)+ pBn,1(0)S∗
rb2

(θ)+λB∗
n−1,2(θ)+ηVn,2S∗

rb2
(θ)

+γRn,2S∗
rb2

(θ), n ≥ 2 , (24)

−(θR∗
1,1(θ)−R1,1(0))=−(λ+γ)R∗

1,1(θ)+λR0S∗
wb1

(θ)+qR2,1(0)S∗
wb1

(θ)+R2,2(0)S∗
wb1

(θ) , (25)

−(θR∗
n,1(θ)−Rn,1(0))=−(λ+γ)R∗

n,1(θ)+λR∗
n−1,1(θ)+ qRn+1,1(0)S∗

wb1
(θ)

+Rn+1,2(0)S∗
wb1

(θ), n ≥ 2 , (26)

−(θR∗
1,2(θ)−R1,2(0))=−(λ+γ)R∗

1,2(θ)+ pR1,1(0)S∗
wb2

(θ) , (27)

−(θR∗
n,2(θ)−Rn,2(0))=−(λ+γ)R∗

n,2(θ)+ pRn,1(0)S∗
wb2

(θ)+λR∗
n−1,2(θ) . (28)

We get (29)-(31) by substituting θ = 0 into (17)-(28) and then summing over n from 1 to ∞.

qV1,1(0)+V1,2(0)=−η(V ∗
1 (1,0)+V ∗

2 (1,0))+λV0 , (29)

qB1,1(0)+B1,2(0)=−δ(B∗
1 (1,0)+B∗

2 (1,0))+η(V ∗
1 (1,0)+V ∗

2 (1,0))+γ(R∗
1 (1,0)+R∗

2 (1,0))+λB0 ,
(30)

qR1,1(0)+R1,2(0)=−γ(R∗
1 (1,0)+R∗

2 (1,0))+λR0 . (31)

From (11) and (31), we get

δ(B∗
1 (1,0)+B∗

2 (1,0))= γ(R0 +R∗
1 (1,0)+R∗

2 (1,0)) . (32)

We obtain (33)-(38) by multiplying by zn into (17)-(28) as well as summing over n from 1 to ∞.

(θ−η−λ+λz)V ∗
1 (z,θ)= z−1V1(z,0)(z− qS∗

wv1
(θ))−S∗

wv1
(θ)(λV0z− qV1,1(0)−V1,2(0)

+ z−1V2(z,0)) , (33)

(θ−η−λ+λz)V ∗
2 (z,θ)=V2(z,0)− pV1(z,0)S∗

wv2
(θ) , (34)

(θ−δ−λ+λz)B∗
1 (z,θ)= z−1B1(z,0)(z− qS∗

rb1
(θ))−S∗

rb1
(θ)(ηV ∗

1 (z,0)+γR∗
1 (z,0)+λB0z

+ z−1B2(z,0)− qB1,1(0)−B1,2(0)) , (35)

(θ−δ−λ+λz)B∗
2 (z,θ)=B2(z,0)−pS∗

rb2
(θ)V1(z,0)−ηS∗

rb2
(θ)V ∗

2 (z,0)−γS∗
rb2

(θ)R∗
2 (z,0) , (36)
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(θ−γ−λ+λz)R∗
1 (z,θ)= z−1R1(z,0)(z− qS∗

wb1
(θ))−S∗

wb1
(θ)(λR0z− qR1,1(0)−R1,2(0)

+ z−1R2(z,0)) , (37)

(θ−γ−λ+λz)R∗
2 (z,θ)=R2(z,0)− pR1(z,0)S∗

wb2
(θ) . (38)

Inserting θ = (η+λ−λz) into (33) and (34), θ = (δ+λ−λz) into (35) and (36) and θ = (γ+λ−λz)
into (37) and (38), we get

V1(z,0)= zS∗
wv1

(η+λ−λz)(qV1,1(0)+V1,2(0)−λV0z)
qS∗

wv1(η+λ−λz)+ pS∗
wv1(η+λ−λz)S∗

wv2(η+λ−λz)− z
, (39)

V2(z,0)=
[
pzS∗

wv1
(η+λ−λz)S∗

wv2
(η+λ−λz)(qV1,1(0)+V1,2(0)−λV0z)

]
qS∗

wv1(η+λ−λz)+ pS∗
wv1(η+λ−λz)S∗

wv2(η+λ−λz)− z
, (40)

B1(z,0)=

 zS∗
rb1

(δ+λ−λz)[qB1,1(0)+B1,2(0)
−ηz−1S∗

rb2
(δ+λ−λz)V ∗

2 (z,0)−γz−1S∗
rb2

(δ+λ−λz)R∗
2 (z,0)

−ηV ∗
1 (z,0)−γR∗

1 (z,0)−λB0z]


qS∗

rb1
(δ+λ−λz)+ pS∗

rb1
(δ+λ−λz)S∗

rb2
(δ+λ−λz)− z

, (41)

B2(z,0)=


S∗

rb2
(δ+λ−λz){pzS∗

rb1
(δ+λ−λz)(qB1,1(0)+B1,2(0)

−ηz−1S∗
rb2

(δ+λ−λz)V ∗
2 (z,0)−γz−1S∗

rb2
(δ+λ−λz)R∗

2 (z,0)
−ηV ∗

1 (z,0)−γR∗
1 (z,0)−λB0z)− (ηV ∗

2 (z,0)+γR∗
2 (z,0))

×(qS∗
rb1

(δ+λ−λz)+ pS∗
rb1

(δ+λ−λz)S∗
rb2

(δ+λ−λz)− z)}


qS∗

rb1
(δ+λ−λz)+ pS∗

rb1
(δ+λ−λz)S∗

rb2
(δ+λ−λz)− z

, (42)

R1(z,0)=
zS∗

wb1
(γ+λ−λz)(qR1,1(0)+R1,2(0)−λR0z)

qS∗
wb1

(γ+λ−λz)+ pS∗
wb1

(γ+λ−λz)S∗
wb2

(γ+λ−λz)− z
, (43)

R2(z,0)=
pzS∗

wb1
(γ+λ−λz)S∗

wb2
(γ+λ−λz)(qR1,1(0)+R1,2(0)−λR0z)

qS∗
wb1

(γ+λ−λz)+ pS∗
wb1

(γ+λ−λz)S∗
wb2

(γ+λ−λz)− z
. (44)

We get (45)-(50) by substituting (39) and (40) into (33) and (34), (41) and (42) into (35) and (36),
and (43) and (44) into (37) and (38), respectively.

V ∗
1 (z,θ)= z(qV1,1(0)+V1,2(0)−λV0z)(S∗

wv1
(η+λ−λz)−S∗

wv1
(θ))[

(θ−η−λ+λz)(qS∗
wv1

(η+λ−λz)
+pS∗

wv1
(η+λ−λz)S∗

wv2
(η+λ−λz)− z)

] , (45)

V ∗
2 (z,θ)=

[
pzS∗

wv1
(η+λ−λz)(qV1,1(0)+V1,2(0)−λV0z)

×(S∗
wv2

(η+λ−λz)−S∗
wv2

(θ))

]
[

(θ−η−λ+λz)(qS∗
wv1

(η+λ−λz)
+pS∗

wv1
(η+λ−λz)S∗

wv2
(η+λ−λz)− z)

] , (46)

B∗
1 (z,θ)=

 z(qB1,1(0)+B1,2(0)−ηz−1S∗
rb2

(δ+λ−λz)V ∗
2 (z,0)

−γz−1S∗
rb2

(δ+λ−λz)R∗
2 (z,0)−ηV ∗

1 (z,0)
−γR∗

1 (z,0)−λB0z)(S∗
rb1

(δ+λ−λz)−S∗
rb1

(θ))


[

(θ−δ−λ+λz)(qS∗
rb1

(δ+λ−λz)
+pS∗

rb1
(δ+λ−λz)S∗

rb2
(δ+λ−λz)− z)

] , (47)
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B∗
2 (z,θ)=


{pzS∗

rb1
(δ+λ−λz)(qB1,1(0)+B1,2(0)−ηz−1S∗

rb2
(δ+λ−λz)

V ∗
2 (z,0)−γz−1S∗

rb2
(δ+λ−λz)R∗

2 (z,0)−ηV ∗
1 (z,0)

−γR∗
1 (z,0)−λB0z)− (ηV ∗

2 (z,0)+γR∗
2 (z,0))

×(qS∗
rb1

(δ+λ−λz)+ pS∗
rb1

(δ+λ−λz)S∗
rb2

(δ+λ−λz)− z)}
×(S∗

rb2
(δ+λ−λz)−S∗

rb2
(θ))


[

(θ−δ−λ+λz)(qS∗
rb1

(δ+λ−λz)
+pS∗

rb1
(δ+λ−λz)S∗

rb2
(δ+λ−λz)− z)

] , (48)

R∗
1 (z,θ)=

z(qR1,1(0)+R1,2(0)−λR0z)(S∗
wb1

(γ+λ−λz)−S∗
wb1

(θ))[
(θ−γ−λ+λz)(qS∗

wb1
(γ+λ−λz)

+pS∗
wb1

(γ+λ−λz)S∗
wb2

(γ+λ−λz)− z)

] , (49)

R∗
2 (z,θ)=

[
pzS∗

wb1
(γ+λ−λz)(qR1,1(0)+R1,2(0)−λR0z)

×(S∗
wb2

(γ+λ−λz)−S∗
wb2

(θ))

]
[

(θ−γ−λ+λz)(qS∗
wb1

(γ+λ−λz)
+pS∗

wb1
(γ+λ−λz)S∗

wb2
(γ+λ−λz)− z)

] . (50)

Eventually, the PGF of the system size, indicated by P(z), can be determined:

P(z)=V0 +B0 +R0 +V ∗
1 (z,0)+V ∗

2 (z,0)+B∗
1 (z,0)+B∗

2 (z,0)+R∗
1 (z,0)+R∗

2 (z,0)

=V0 +B0 +R0 +

[
z(λV0(1− z)−ηV ∗

1 (1,0)−ηV ∗
2 (1,0))

(1− (qS∗
wv1

(η+λ−λz)+ pS∗
wv1

(η+λ−λz)S∗
wv2

(η+λ−λz))

]
[

(η+λ−λz)(qS∗
wv1

(η+λ−λz)
+pS∗

wv1
(η+λ−λz)S∗

wv2
(η+λ−λz)− z)

]

+


z(λB0(1− z)+η(V ∗

1 (1,0)−V ∗
1 (z,0))+γ(R∗

1 (1,0)−R∗
1 (z,0))+η(V ∗

2 (1,0)
−z−1S∗

rb2
(δ+λ−λz)V ∗

2 (z,0))+γ(R∗
2 (1,0)− z−1S∗

rb2
(δ+λ−λz)R∗

2 (z,0))
−δB∗

1 (1,0)−δB∗
2 (1,0))(1− (qS∗

rb1
(δ+λ−λz)+ pS∗

rb1
(δ+λ−λz)S∗

rb2
(δ+λ−λz)))

−(ηV ∗
2 (z,0)+γR∗

2 (z,0))(qS∗
rb1

(δ+λ−λz)+ pS∗
rb1

(δ+λ−λz)S∗
rb2

(δ+λ−λz)− z)


[

(δ+λ−λz)(qS∗
rb1

(δ+λ−λz)
+pS∗

rb1
(δ+λ−λz)S∗

rb2
(δ+λ−λz)− z)

]

+

[
z(λR0(1− z)−ηR∗

1 (1,0)−γR∗
2 (1,0))

×(1− (qS∗
wb1

(γ+λ−λz)+ pS∗
wb1

(γ+λ−λz)S∗
wb2

(γ+λ−λz))

]
[

(γ+λ−λz)(qS∗
wb1

(γ+λ−λz)
+pS∗

wb1
(γ+λ−λz)S∗

wb2
(γ+λ−λz)− z)

] . (51)

From Rouche’s theorem, qS∗
wv1

(η+ λ− λz) + pS∗
wv1

(η+ λ− λz)S∗
wv2

(η+ λ− λz) − z = 0. For
|z| < 1, there is only one solution, represented by z0. Assuming z = z0, the denominator for
V ∗

1 (z,0)+V ∗
2 (z,0) be zero, the numerator must also be zero as well. Likewise, qS∗

rb1
(δ+λ−

λz)+ pS∗
rb1

(δ+λ−λz)S∗
rb2

(δ+λ−λz)− z = 0. For |z| < 1, there is only one solution, represented
by z1. Assuming z = z1, the denominator for B∗

1 (z,0)+B∗
2 (z,0) be zero, the numerator must

also be zero as well. Moreover, qS∗
wb1

(γ+λ−λz)+ pS∗
wb1

(γ+λ−λz)S∗
wb2

(γ+λ−λz)− z = 0. For
|z| < 1, there is only one solution, represented by z2 . Assuming z = z2, the denominator for
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R∗
1 (z,0)+R∗

2 (z,0) is zero, the numerator must also be zero as well. Thus, we obtain

η(V ∗
1 (1,0)+V ∗

2 (1,0))=λV0(1− z0) , (52)

δ(B∗
1 (1,0)+B∗

2 (1,0))=λB0(1− z1)+λV0(1− z0)+λR0(1− z2)

−η(V ∗
1 (z1,0)− z−1

1 S∗
rb2

(δ+λ−λz1)V ∗
1 (z1,0))

−γ(R∗
1 (z1,0)− z−1

1 S∗
rb2

(δ+λ−λz1)R∗
2 (z1,0)) , (53)

γ(R∗
1 (1,0)+R∗

2 (1,0))=λR0(1− z2) . (54)

From (16), (6) and (51), R0 is obtained as

R0 =
NR0

DR0

,

where

NR0 = ηλδγ(qS∗
wv1

(η)+ pS∗
wv1

(η)S∗
wv2

(η)−1)(qS∗
wb1

(γ)+ pS∗
wb1

(γ)S∗
wb2

(γ)−1)

× [η(1− z1)(qS∗
wv1

(η+λ−λz1)+ pS∗
wv1

(η+λ−λz1)S∗
wv2

(η+λ−λz1)− z1)

+λ(1− z0)(qS∗
wv1

(η+λ−λz1)+ pS∗
wv1

(η+λ−λz1)S∗
wv2

(η+λ−λz1)− z1)

−λ(1− z0)(B1(z1)(S∗
wv1

(η+λ−λz1)− z1)− pz−1
1 B2(z1)

×S∗
rb2

(δ+λ−λz1)S∗
wv1

(η+λ−λz1)(S∗
wv2

(η+λ−λz1)− z1))]

× (qS∗
wb1

(γ+λ−λz1)+ pS∗
wb1

(γ+λ−λz1)S∗
wb2

(γ+λ−λz1)− z1) ,

DR0 = ηλ(δ+γ)(qS∗
wv1

(η)+ pS∗
wv1

(η)S∗
wv2

(η)−1)(qS∗
wb1

(γ)+ pS∗
wb1

(γ)S∗
wb2

(γ)−1)

× (qS∗
wb1

(γ+λ−λz1)+ pS∗
wb1

(γ+λ−λz1)S∗
wb2

(γ+λ−λz1)− z1)

× [η(1− z1)(qS∗
wv1

(η+λ−λz1)+ pS∗
wv1

(η+λ−λz1)S∗
wv2

(η+λ−λz1)− z1)

+λ(1− z0)(qS∗
wv1

(η+λ−λz1)+ pS∗
wv1

(η+λ−λz1)S∗
wv2

(η+λ−λz1)− z1)

−λ(1− z0)(B1(z1)(S∗
wv1

(η+λ−λz1)− z1)− pz−1
1 B2(z1)S∗

rb2
(δ+λ−λz1)

×S∗
wv1

(η+λ−λz1)(S∗
wv2

(η+λ−λz1)− z1))](γ+λ−λz2)

+δγ{η(qS∗
wv1

(η)+ pS∗
wv1

(η)S∗
wv2

(η)−1)(qS∗
wb1

(γ)+ pS∗
wb1

(γ)S∗
wb2

(γ)−1)

× [η(qS∗
wv1

(η+λ−λz1)+ pS∗
wv1

(η+λ−λz1)S∗
wv2

(η+λ−λz1)− z1)

× (γ(qS∗
wb1

(γ+λ−λz1)+ pS∗
wb1

(γ+λ−λz1)S∗
wb2

(γ+λ−λz1)− z1)

+λ(1− z2)(A1(z1)(S∗
wb1

(γ+λ−λz1)− z1)+ pz−1
1 A2(z1)S∗

rb2
(δ+λ−λz1)

× (S∗
wb2

(γ+λ−λz1)− z1)))+γ(qS∗
wb1

(γ+λ−λz1)+ pS∗
wb1

(γ+λ−λz1)

×S∗
wb2

(γ+λ−λz1)− z1)(λ(1− z0)(qS∗
wv1

(η+λ−λz1)+ pS∗
wv1

(η+λ−λz1)

×S∗
wv2

(η+λ−λz1)− z1)−λ(1− z0)(B1(z1)(S∗
wv1

(η+λ−λz1)− z1)

− pz−1
1 B2(z1)S∗

rb2
(δ+λ−λz1)S∗

wv1
(η+λ−λz1)(S∗

wv2
(η+λ−λz1)− z1)))]

+λ(qS∗
wv1

(η)+ pS∗
wv1

(η)S∗
wv2

(η)−1)(qS∗
wb1

(γ)+ pS∗
wb1

(γ)S∗
wb2

(γ)−1)

× [λ(qS∗
wv1

(η+λ−λz1)+ pS∗
wv1

(η+λ−λz1)S∗
wv2

(η+λ−λz1)− z1)(1− z2)

× (A1(z1)(S∗
wb1

(γ+λ−λz1)− z1)+ pz−1
1 A2(z1)S∗

rb2
(δ+λ−λz1)(S∗

wb2
(γ+λ−λz1)

− z1))+γz1(qS∗
wv1

(η+λ−λz1)+ pS∗
wv1

(η+λ−λz1)S∗
wv2

(η+λ−λz1)− z1)
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× (qS∗
wb1

(γ+λ−λz1)+ pS∗
wb1

(γ+λ−λz1)S∗
wb2

(γ+λ−λz1)− z1)](η+λ−λz0)} ,

where

A1(z1)=
γz1(z1 − z2)(S∗

wb1
(γ+λ−λz1)−1)

(1− z2)(γ+λ−λz1)(S∗
wb1

(γ+λ−λz1)− z1)
,

A2(z1)=
γz1(z1 − z2)(S∗

wb2
(γ+λ−λz1)−1)

(1− z2)(γ+λ−λz1)(S∗
wb2

(γ+λ−λz1)− z1)
,

B1(z1)= ηz1(z1 − z0)(S∗
wv1

(η+λ−λz1)−1)
(1− z0)(η+λ−λz1)(S∗

wv1(η+λ−λz1)− z1)
,

B2(z1)= ηz1(z1 − z0)(S∗
wv2

(η+λ−λz1)−1)
(1− z0)(η+λ−λz1)(S∗

wv2(η+λ−λz1)− z1)
.

(Kim et al. [10], and Kim and Lee [9])

Special Cases
Case I: In our model if we place p = 0 and η→∞ then our model is remodeled as “An M/G/1

queue with disasters and working breakdowns” (Kim and Lee [9]).

Case II: In our model if we place p = 0, η → ∞ and δ = 0 then our model is remodeled as
“An M/G/1 queue” (Medhi [15]).

4. Metrics of Effectiveness
Size of the Average System
Allow Lwv, Lrb and Lwb to represent the average system size throughout working vacation,
typical busy and repair periods, respectively and let Wwv, Wrb and Wwb represent the average
waiting times of customers in the system throughout working vacation, typical busy and repair
periods, respectively. Then

(a) Differentiating (V ∗
1 (z,0)+V ∗

2 (z,0)) with regard to z and calculating at z = 1 gives the
expected number of customers in the system (Lwv).

Lwv =

λV0


η(qS∗

wv1
(η)+ pS∗

wv1
(η)S∗

wv2
(η)−1){(1− z0)(qS∗

wv1
(η)+ pS∗

wv1
(η)

×S∗
wv2

(η)−1)+ (qS∗
wv1

(η)+ pS∗
wv1

(η)S∗
wv2

(η)−1)−λ(1− z0)(qS∗′
wv1

(η)
+pS∗′

wv1
(η)S∗

wv2
(η)+ pS∗

wv1
(η)S∗′

wv2
(η))}− (1− z0)(qS∗

wv1
(η)

+pS∗
wv1

(η)S∗
wv2

(η)−1){−λ(qS∗
wv1

(η)+ pS∗
wv1

(η)S∗
wv2

(η)−1)
+η(−qλS∗′

wv1
(η)− pλS∗′

wv1
(η)S∗

wv2
(η)− pλS∗

wv1
(η)S∗′

wv2
(η)−1)}


[η(qS∗

wv1(η)+ pS∗
wv1(η)S∗

wv2(η)−1)]2 .

We used Little’s formula to calculate Wwv = Lwv
λ

and obtained the expected number of waiting
customers in the system during the working vacation.

(b) Now, differentiating (B∗
1 (z,0)+B∗

2 (z,0)) with regard to z and calculating at z = 1 provides
the expected number of customers in the system during typical busy (Lrb).

Lrb =
Nrb

Drb
,

Nrb = δ(qS∗
rb1

(δ)+ pS∗
rb1

(δ)S∗
rb2

(δ)−1){(λB0(1− z1)+η(V ∗
1 (1,0)−V ∗

1 (z1,0))
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+γ(R∗
1 (1,0)−R∗

1 (z1,0))+η(S∗
rb2

(δ)V ∗
2 (1,0)− z−1

1 S∗
rb2

(δ+λ−λz1)V ∗
2 (z1,0))

+γ(S∗
rb2

(δ)R∗
2 (1,0)− z−1

1 S∗
rb2

(δ+λ−λz1)R∗
2 (z1,0)))(qS∗

rb1
(δ)+ pS∗

rb1
(δ)S∗

rb2
(δ)−1)

+ (λB0 +ηV ∗′
1 (1,0)+γR∗′

1 (1,0)−ηS∗
rb2

(δ)V ∗
2 (1,0)−ηλS∗′

rb2
(δ)V ∗

2 (1,0)

+ηS∗
rb2

(δ)V ∗′
2 (1,0)−γS∗

rb2
(δ)R∗

2 (1,0)−γλS∗′
rb2

(δ)R∗
2 (1,0)+γS∗

rb2
(δ)R∗′

2 (1,0))

× (qS∗
rb1

(δ)+ pS∗
rb1

(δ)S∗
rb2

(δ)−1)+ (λB0(1− z1)+η(V ∗
1 (1,0)−V ∗

1 (z1,0))

+γ(R∗
1 (1,0)−R∗

1 (z1,0))+η(S∗
rb2

(δ)V ∗
2 (1,0)− z−1

1 S∗
rb2

(δ+λ−λz1)V ∗
2 (z1,0))

+γ(S∗
rb2

(δ)R∗
2 (1,0)− z−1

1 S∗
rb2

(δ+λ−λz1)R∗
2 (z1,0)))(−qλS∗′

rb1
(δ)− pλS∗′

rb1
(δ)S∗

rb2
(δ)

− pλS∗
rb1

(δ)S∗′
rb2

(δ))− {(ηV ∗
2 (1,0)+γR∗

2 (1,0))(−qλS∗′
rb1

(δ)− pλS∗′
rb1

(δ)S∗
rb2

(δ)

− pλS∗
rb1

(δ)S∗′
rb2

(δ)−1)(S∗
rb2

(δ)−1)+ (ηV ∗′
2 (1,0)+γR∗′

2 (1,0))

× (qS∗
rb1

(δ)+ pS∗
rb1

(δ)S∗
rb2

(δ)−1)(S∗
rb2

(δ)−1)−λ(ηV ∗
2 (1,0)+γR∗

2 (1,0))

× (qS∗
rb1

(δ)+ pS∗
rb1

(δ)S∗
rb2

(δ)−1)S∗′
rb2

(δ)}

− {(λB0(1− z1)+η(V ∗
1 (1,0)−V ∗

1 (z1,0))+γ(R∗
1 (1,0)−R∗

1 (z1,0))

+η(S∗
rb2

(δ)V ∗
2 (1,0)− z−1

1 S∗
rb2

(δ+λ−λz1)V ∗
2 (z1,0))

+γ(S∗
rb2

(δ)R∗
2 (1,0)− z−1

1 S∗
rb2

(δ+λ−λz1)R∗
2 (z1,0)))(qS∗

rb1
(δ)+ pS∗

rb1
(δ)S∗

rb2
(δ)

−1)− (ηV ∗
2 (1,0)+γR∗

2 (1,0))(qS∗
rb1

(δ)+ pS∗
rb1

(δ)S∗
rb2

(δ)−1)(S∗
rb2

(δ)−1)}

{−λ(qS∗
rb1

(δ)+ pS∗
rb1

(δ)S∗
rb2

(δ)−1)+δ(−qλS∗′
rb1

(δ)− pλS∗′
rb1

(δ)S∗
rb2

(δ)− pλS∗
rb1

(δ)

×S∗′
rb2

(δ)−1)} ,

Drb = [δ(qS∗
rb1

(δ)+ pS∗
rb1

(δ)S∗
rb2

(δ)−1)]2 .

We used Little’s formula to calculate Wrb = Lrb
λ

and obtained the expected number of waiting
customers in the system during typical busy.

(c) Then differentiating (R∗
1 (z,0)+R∗

2 (z,0)) with regard to z and calculating at z = 1 gives the
expected number of customers in the system during repair periods (Lwb).

Lwb =

λR0


γ(qS∗

wb1
(γ)+ pS∗

wb1
(γ)S∗

wb2
(γ)−1){(1− z2)(qS∗

wb1
(γ)+ pS∗

wb1
(γ)

×S∗
wb2

(γ)−1)+ (qS∗
wb1

(γ)+ pS∗
wb1

(γ)S∗
wb2

(γ)−1)−λ(1− z2)(qS∗′
wb1

(γ)
+pS∗′

wb1
(γ)S∗

wb2
(γ)+ pS∗

wb1
(γ)S∗′

wb2
(γ))}− (1− z2)(qS∗

wb1
(γ)

+pS∗
wb1

(γ)S∗
wb2

(γ)−1){−λ(qS∗
wb1

(γ)+ pS∗
wb1

(γ)S∗
wb2

(γ)−1)
+γ(−qλS∗′

wb1
(γ)− pλS∗′

wb1
(γ)S∗

wb2
(γ)− pλS∗

wb1
(γ)S∗′

wb2
(γ)−1)}


[γ(qS∗

wb1
(γ)+ pS∗

wb1
(γ)S∗

wb2
(γ)−1)]2 .

We used Little’s formula to calculate Wwb = Lwb
λ

and obtained the expected number of waiting
customers in the system during repair periods.

5. Statistical Outcomes
Setting q = 0.8, p = 0.2, µrb2 = 2.6, µwb1 = 2.7, µwb2 = 2.8, µwv1 = 2.5, µwv2 = 2.6, η= 2.1, δ= 2.5,
γ= 4.8, z0 = 0.5, z1 = 0.5, z2 = 0.5 and changing η from 2.1 to 2.3 insteps of 0.1, δ from 2.5 to
3.5 insteps of 0.5 and γ from 4.8 to 6.8 insteps of 1.0. We calculated the measured value of Lwv
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and tabulated them in Table 1, Table 2, and Table 3, respectively. The correlating graphs for λ
versus Lwv are seen in Figure 1, Figure 2 and Figure 3, respectively. As λ rises, Lwv falls for
various values of η, whereas Lwv rises for various values of δ and γ, as seen in the graphs.
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η 2.3
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Figure 1. λ vs. Lwv

λ η= 2.1 η= 2.2 η= 2.3
1.0 0.0971 0.0895 0.0827
1.2 0.1269 0.1161 0.1082
1.4 0.1572 0.1452 0.1344
1.6 0.1878 0.1735 0.1608
1.8 0.2181 0.2017 0.1872
2.0 0.2471 0.2295 0.2131

Table 1. λ vs. Lwv
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Figure 2. λ vs. Lwv

λ δ= 2.5 δ= 3.0 δ= 3.5
1.0 0.0971 0.0998 0.1018
1.2 0.1269 0.1309 0.1339
1.4 0.1572 0.1628 0.1671
1.6 0.1878 0.1951 0.2008
1.8 0.2181 0.2274 0.2345
2.0 0.2471 0.2593 0.2671

Table 2. λ vs. Lwv
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Figure 3. λ vs. Lwv

λ γ= 4.8 γ= 5.8 γ= 6.8
1.0 0.0971 0.0989 0.1002
1.2 0.1269 0.1297 0.1317
1.4 0.1572 0.1613 0.1642
1.6 0.1878 0.1932 0.1972
1.8 0.2181 0.2252 0.2303
2.0 0.2471 0.2568 0.2633

Table 3. λ vs. Lwv

Setting q = 0.8, p = 0.2, µwb1 = 2.3, µwb2 = 2.4, µrb1 = 2.2, µrb2 = 2.1, µwv1 = 2.5, µwv2 = 2.3,
η= 2.1, δ= 2.5, γ= 2.8, z0 = 0.5, z1 = 0.5, z2 = 0.5 and changing η from 2.1 to 4.1 insteps of 1.0,
δ from 2.5 to 4.5 insteps of 1.0 and γ from 2.8 to 3.6 insteps of 0.4. We calculated the measured
value of Lrb and tabulated them in Table 4, Table 5 and Table 6, respectively. The correlating
graphs for λ versus Lrb are seen in Figure 4, Figure 5 and Figure 6, respectively. As λ rises,
Lrb rises for various values of η and γ, Lrb falls for various values of δ, as seen in the graphs.
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Figure 4. λ vs. Lrb

λ η= 2.1 η= 3.1 η= 4.1
1.0 0.2447 0.2573 0.2628
1.2 0.2966 0.3112 0.3176
1.4 0.3505 0.3663 0.3731
1.6 0.4063 0.4225 0.4294
1.8 0.4631 0.4798 0.4864
2.0 0.5236 0.5382 0.5441

Table 4. λ vs. Lrb
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Figure 5. λ vs. Lrb

λ δ= 2.5 δ= 3.5 δ= 4.5
1.0 0.2447 0.1946 0.1605
1.2 0.2966 0.2335 0.1917
1.4 0.3505 0.2733 0.2234
1.6 0.4063 0.3140 0.2556
1.8 0.4631 0.3557 0.2884
2.0 0.5236 0.3985 0.3218

Table 5. λ vs. Lrb
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Figure 6. λ vs. Lrb

λ γ= 2.8 γ= 3.2 γ= 3.6
1.0 0.2447 0.2464 0.2474
1.2 0.2966 0.2981 0.3005
1.4 0.3505 0.3537 0.3558
1.6 0.4063 0.4105 0.4133
1.8 0.4631 0.4694 0.4730
2.0 0.5236 0.5303 0.5350

Table 6. λ vs. Lrb

Setting q = 0.8, p = 0.2, µwb1 = 2.7, µwb2 = 2.8, µwv1 = 2.5, µrb2 = 2.6, η= 2.2, δ= 2.7, γ= 2.9,
z0 = 0.5, z1 = 0.5, z2 = 0.5 and changing η from 2.2 to 2.6 insteps of 0.2, δ from 2.7 to 4.7
insteps of 1.0 and γ from 2.9 to 4.9 insteps of 1.0. We calculated the measured value of Lwb

and tabulated them in Table 7, Table 8 and Table 9, respectively. The correlating graphs for λ
versus Lwb are seen in Figure 7, Figure 8 and Figure 9, respectively. As λ rises, Lwb falls for
various values of η and γ whereas Lwb rises for various values of δ, as seen in the graphs.
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Figure 7. λ vs. Lwb

λ η= 2.2 η= 2.4 η= 2.6
1.0 0.0767 0.0709 0.0661
1.2 0.1047 0.0968 0.0904
1.4 0.1352 0.1252 0.1169
1.6 0.1678 0.1555 0.1453
1.8 0.2021 0.1873 0.1751
2.0 0.2378 0.2205 0.2062

Table 7. λ vs. Lwb
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Figure 8. λ vs. Lwb

λ δ= 2.7 δ= 3.7 δ= 4.7
1.0 0.0767 0.0799 0.0819
1.2 0.1047 0.1098 0.1129
1.4 0.1352 0.1426 0.1472
1.6 0.1678 0.1779 0.1843
1.8 0.2021 0.2153 0.2236
2.0 0.2378 0.2543 0.2649

Table 8. λ vs. Lwb
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Figure 9. λ vs. Lwb

λ γ= 2.9 γ= 3.9 γ= 4.9
1.0 0.0767 0.0560 0.0424
1.2 0.1047 0.0768 0.0582
1.4 0.1352 0.0997 0.0757
1.6 0.1678 0.1242 0.0945
1.8 0.2021 0.1501 0.1145
2.0 0.2378 0.1772 0.1354

Table 9. λ vs. Lwb

6. Conclusion
We looked at a M/G/1 queue with second optional service, disasters, working breakdowns and
working vacation is evaluated. We established steady state queue length distributions for idle
server, typical busy service and delayed service using the PGF and supplementary variable
technique. Also, we perform some special cases. Eventually, the statistical outcomes and metrics
of effectiveness are computed.
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