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1. Introduction
In 2000, Hitzler and Seda [6] introduced the notion of metric like (dislocated metric) space
and generalized Banach [5] contraction principle in such spaces. In 2012, Amini-Harandi [4]
discovered dislocated metric spaces and proved some fixed point theorems in these spaces. Many
authors proved fixed point theorems in these spaces (see [1–3,7,9,10,14,15]).

In 1984, Wang et al. [13] established some fixed point theorems for expansive mappings
in complete metric spaces. Recently in 2012, Shahi et al. [12] proved fixed point theorems for
(ξ,α)-expansive mappings in complete metric space.

In this paper, we shall prove fixed point theorems for (ξ,α)-expansive mappings in metric
like spaces.

Definition 1.1 ([4]). Let X be a non-empty set and d : X × X → [0,∞) be a function satisfying
the following conditions:

(i) d(x, y)= 0⇒ x = y; (ii) d(x, y)= d(y, x); (iii) d(x, z)≤ d(x, y)+d(y, z),
for all x, y, z ∈ X .
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Then d is called metric like (dislocated metric) and (X ,d) is called metric like (dislocated) metric
space.

Definition 1.2 ([4]). Let (X ,d) be a metric like space:
(i) A sequence {xn} in X is a Cauchy sequence if lim

n,m→∞d(xn, ym) exists and is finite.

(ii) (X ,d) is complete if every Cauchy sequence {xn} in X converges to a point x ∈ X , that is,
lim

n→∞d(x, xn)= d(x, x)= lim
n,m→∞d(xn, xm).

(iii) A mapping T : (X ,d)→ (X ,d) is continuous if for any sequence xn in X such that
d(xn, x)→ d(x, x) as n →∞,

we have
d(Txn,Tx)→ d(Tx,Tx) as n →∞.

Lemma 1.3 ([8]). [8]Let (X ,d) be a metric like space. Let {Xn} be a sequence in X such that
Xn → x where x ∈ X and d(x, x)= 0. Then for all y ∈ X , we have

lim
n→∞d(xn, y)= d(x, y).

Definition 1.4 ([11]). Let T : X → X and α : X × X → [0,∞). We say that T is an α-admissible
mapping if

α(x, y)= 1 =⇒ α(Tx,T y)≥ 1, for all x, y ∈ X .

In 2012, Shahi et al. [12] gave the following family of functions:
Let χ denote all functions ξ : [0,∞)→ [0,∞) which satisfy the following properties:

(i) ξ is non decreasing;
(ii)

∑+∞
n=1 ξ

n(a)<+∞ for each a > 0 where ξn is the nth iterate of ξ;
(iii) ξ(a+b)= ξ(a)+ξ(b),

for all a,b ∈ [0,∞).

Lemma 1.5 ([11]). If ξ : [0,∞) → [0,∞) is a non decreasing function, then for each a > 0,
lim

n→∞ξn(a)= 0 implies ξ(a)< a.

2. Main Results
In this section, we shall prove the fixed point theorems for expansive mappings.

Definition 2.1. Let (X ,d) be a metric like space and T : X → X be a given mapping. We say
that T is a (ξ,α)-expansive mapping if there exists two functions ξ ∈ χ and α : X × X → [0,∞)
such that

ξ(d(Tx,T y))≥ a(x, y)d(x, y), (2.1)
for all x, y ∈ X .

Theorem 2.2. Let (X ,d) be a complete metric-like space and T : X → X be a bijective, (ξ,α)-
expansive mapping satisfying the following conditions:

(i) T−1 is a-admissible;
(ii) There exists x0 ∈ X such that a(x0,T−1x0)≥ 1;

(iii) T is continuous.
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Then there exists a w ∈ X such that d(w,w)= 0. Assume in addition that
if d(x, x)= 0, for some x ∈ X ,

then a(T−1x,T−1x)≥ 1. Then such w is a fixed point of T , that is, Tw = w.

Proof. Let us define the sequence {xn} in X by
xn = Txn+1, for all n ∈N,

where x0 ∈ X such that α(x0,T−1x0)≥ 1. Now if xm = xm+1 for some m ∈N, then Txm+1 = xm. So
T has a fixed point and we are done.
So, let us assume that

xn ̸= xn+1, for all n ∈N.
It is given that α(x0, x1) = α(x0,T−1x0) ≥ 1. Recalling that T−1 is a-admissible, therefore, we
have

α(T−1x0,T−1x1)=α(x1, x2)≥ 1.
Continuing this process, we get

α(xn, xn+1)≥ 1, (2.2)
for all n ∈N.
Using equation (2.2) and applying equation (2.1) with x = xn, y= xn+1, we obtain

d(xn, xn+1)≤α(xn, xn+1)d(xn, xn+1)
≤ ξ(d(Txn,Txn+1))
= ξ(d(xn−1, xn)).

Therefore, by repetition of inequality, we have
d(xn, xn+1)≤ ξn(d(x0, x1)),

for all n ∈N.
For any n > m ≥ 0, we have

d(xm, xn)≤ d(xm, xm+1)+d(xm+1, xm+2)+d(xm+2, xm+3)+ . . .+d(xn−1, xn)

≤ ξm(d(x0, x1))+ . . .+ξn−1(d(x0, x1)).
From

∑
ξn(a)<∞ for all a > 0, it follows that {xn} is Cauchy sequence in the complete metric

like space (X ,d). So, there exists w ∈ X such that
lim

n→∞d(xn,w)= d(w,w)= lim
n,m→∞d(xn, xm)= 0. (2.3)

Since T−1is continuous, from equation (2.3), we obtain that
lim

n→∞d(xn+1,T−1w)= lim
n→∞d(T−1xn,T−1w)= d(T−1w,T−1w). (2.4)

On the other hand, by equation (2.3) and Lemma 1.3, we have
lim

n→∞d(xn+1,T−1w)= d(w,T−1w). (2.5)

Comparing equations (2.4) and (2.5), we get
d(T−1w,T−1w)= d(w,T−1w).

Now from equation (2.1) using hypothesis, we have
d(w,T−1w)= d(T−1w,T−1w)

≤α(T−1w,T−1w)d(T−1w,T−1w)
≤ ξ(d(w,w))
< d(w,w)
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which implies that
d(w,T−1w)= 0,

that is w = T−1w implies that
Tw = w.

In the next theorem we omit continuity by the following hypothesis:

(H). If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as →∞, then
α(T−1xn,T−1x)≥ 1.

Theorem 2.3. If in Theorem 2.2, we replace continuity by the hypothesis (H), then still T has a
fixed point.

Proof. Following the proof of Theorem 2.2, we know that sequence {xn} is Cauchy sequence
in X .
Since (X ,d) is a complete metric like space, xn → w as n →∞.
So, a(T−1xn,T−1w)≥ 1.
From equation (2.1), we get

d(T−1w,w)≤ d(T−1w, xn+1)+d(xn+1,w)

= d(T−1xn,T−1w)+d(xn+1,w)

≤α(T−1xn,T−1w)d(T−1xn,T−1w)+d(xn+1,w)
≤ ξ(d(xn,w))+d(xn+1,w).

Taking limit as n →∞ and using continuity of ξ at t = 0 and equation (2.3), we obtain that
d(T−1w,w)= 0, that is

T−1w = w
implies that

Tw = w.

Now we shall a condition to get a uniqueness of fixed point.

Theorem 2.4. If in Theorems 2.2 and 2.3, we add the following condition:
If w ∈ X such that Tw = w, then for all v ∈ X , a(w,v)≥ 1.

Then T has a unique fixed point.

Proof. Following the proof of Theorems 2.2 and 2.3, we obtain that w is the fixed point of T .
So let us suppose, if possible T have w and v two distinct fixed point.

Then equation (2.1) using above condition and definition of ξ, implies that
d(w,v)≤ a(w,v)d(w,v)

≤ ξ(d(Tw,Tv))
< d(Tw,Tv)
= d(w,v)

a contradiction.
So, T has a unique fixed point.

Example 2.5. Let X = [0,∞) and d : [0,∞)× [0,∞)→ [0,∞) as d(x, y)=max{x, y}.
Clearly, (X ,d) is a complete metric like space.
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Define T : [0,∞)→ [0,∞) as Tx = 4x and

ξ(a)= a
2

, for all a ≥ 0,

α(x, y)= 1, for all x, y ∈ X .
Now, without loss of generality assume that x ≥ y, then left hand side of equation (2.1) is

ξ(d(Tx,T y))= 1
2

4x = 2x. (2.6)

Similarly, right hand side of equation (2.1) becomes
a(x, y)d(x, y)= x. (2.7)

From equations (2.6) and (2.7), we obtain that
T is bijective (ξ,α)-expansive mapping.
Clearly, T−1 is α-admissible.
If we take x0 = 1, then clearly α(1,T−11)≥ 1.
Also d(0,0)= 0, so it is clear that α(0,T−10)≥ 1 and T−1 is continuous.
So, all the conditions of Theorems 2.2 and 2.3 are satisfied.
Hence T has an unique fixed point.
Clearly, 0 is the unique fixed point ofT .

Example 2.6. Let X = [0,∞) and d : [0,∞)× [0,∞)→ [0,∞) as d(x, y)=max{x, y}.
Clearly, (X ,d) is a complete metric like space.
Define T : [0,∞)→ [0,∞) as Tx = 5x and

ξ(a)= a
2

, for all a ≥ 0,

a(x, y)= 3
2

, for all x, y ∈ X .

Now, without loss of generality assume that x ≥ y, then left hand side of equation (2.1) is

ξ(d(Tx,T y))= 1
2

5x = 5
2

x . (2.8)

Similarly, right hand side of equation (2.1) becomes

α(x, y)d(x, y)= 3
2

x. (2.9)

From equations (2.8) and (2.9), we obtain that
T is bijective (ξ,α)-expansive mapping.
Clearly, T−1 is a-admissible.
If we take x0 = 1, then clearly a(1,T−11)≥ 1.
Also, d(0,0)= 0, so it is clear that α(0,T−10)≥ 1 and hypothesis (H) holds.
So, all the conditions of Theorem 2.3 are satisfied.
Hence T has an unique fixed point.
Clearly, 0 is the unique fixed point of T .
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