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Abstract. A method of solution for the problem of an arbitrary unsteady Stokes flow in the presence
of a shear free sphere is discussed. The corresponding Faxén [2] relations for a shear-free sphere are
derived. Some previously known results are derived as limiting cases and are detailed in an example.
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1. Introduction
Unsteady and steady Stokes flows in the presence of a spherical boundary have been studied
extensively with different boundary conditions owing to their various scientific and engineering
applications. Faxén’s [2] laws for rigid boundary conditions are well known. Harper [3] derived
a sphere theorem for an axisymmetric steady Stokes flow for a sphere with shear free boundary
conditions. Rallison [4] gave Faxén [2] relations for a shear free particle in an arbitrary steady
Stokes flow. The problem of an unsteady Stokes flow past a rigid spherical particle was discussed
[1, 5] using a complete general solution, expressed in terms of two scalar functions A and B.
In this paper, we discuss the problem of an arbitrary unsteady Stokes flow in the presence of
a shear free sphere. Faxén’s [2] laws are given and compared with previously known results.
The results are illustrated by an example.

The equations of motion for the unsteady Stokes flow in a viscous, incompressible fluid in
the absence of any external forces are given by

ρ
∂V
∂t

=−∇p+µ∇2V , (1.1)
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∇·V = 0, (1.2)

where V is the fluid velocity, ρ is the density, µ is the coefficient of dynamic viscosity of the
fluid. We rewrite equation (1.1) as

µ

(
∇2 − 1

ν

∂

∂t

)
V =∇p, (1.3)

where ν = µ

ρ
is the coefficient of kinematic viscosity. A general solution of unsteady Stokes

equations (1.1) and (1.2) is given in [5] as follows:

V =CurlCurl(rA)+Curl(rB), (1.4)

p = p0 +µ ∂

∂r

[
r
(
∇2 − 1

ν

∂

∂t

)
A

]
, (1.5)

where p0 is a constant and A, B are scalar functions that satisfy equations

∇2
(
∇2 − 1

ν

∂

∂t

)
A = 0, (1.6)(

∇2 − 1
ν

∂

∂t

)
B = 0 . (1.7)

A solution of (1.6) can be decomposed as follows:

A = A1 + A2, (1.8)

where

∇2A1 = 0, (1.9)(
∇2 − 1

ν

∂

∂t

)
A2 = 0 . (1.10)

The general solution of the equations (1.6) and (1.7) can therefore be written as A = A1 + A2,
where

A1 =
∞∑

n=1

(
αnrn βn

rn+1

)
Sn(θ,ϕ)eλ

2νt, (1.11)

A2 =
∞∑

n=1
(α′

n fn(λr)+β′
n gn(λr))Sn(θ,ϕ)eλ

2νt, (1.12)

B =
∞∑

n=1
(ϵn fn(λr)+ϵ′n gn(λr))Tn(θ,ϕ)eλ

2νt, (1.13)

Sn(θ,ϕ)=
n∑

m=0
Pm

n (cosθ)(Anm cosmϕ+Bnm sinmϕ), (1.14)

Tn(θ,ϕ)=
n∑

m=0
Pm

n (cosθ)(Cnm cosmϕ+Dnm sinmϕ), (1.15)

where αn, βn, α′
n, β′

n, ϵn, ϵ′n, Anm, Bnm, Cnm, Dnm are constants and Re(λ2)≤ 0. The functions
fn(R) =

√
π

2R In+ 1
2
(R), gn(R) =

√
π

2R Kn+ 1
2
(R) are the modified Bessel functions of fractional

order.
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2. Shear Free Sphere in Unsteady Stokes Flow
In [5] the problem of an arbitrary unsteady Stokes flow in the presence of a rigid sphere was
given. Let us now consider the unsteady Stokes flow in the presence of a shear-free sphere of
radius a in a viscous, incompressible fluid with boundary conditions on r = a given by

(i) normal velocity is zero, i.e., qr = 0 on r = a ;

(ii) tangential stress components Trθ and Trϕ are zero on r = a.

In terms of A and B, the conditions (i) and (ii) are A = 0, ∂2 A
∂r2 = 0 and ∂

∂r
(B

r
) = 0 on r = a.

Further, V →V0 as r →∞, where V0 is the undisturbed flow given by

V0 =CurlCurl(rA0)+Curl(rB0), (2.1)

where

A0 =
∞∑

n=1
(αnrn +α′

n fn(λr))Sn(θ,ϕ)eλ
2νt, (2.2)

B0 =
∞∑

n=1
ϵn fn(λr)Tn(θ,ϕ)eλ

2νt, (2.3)

αn, α′
n and ϵn being known constants. The disturbance caused due to the presence of the sphere

of radius a modifies the flow so that the perturbed flow is represented by V and p as given in
equations (1.4) and (1.5), respectively. The scalars A and B are assumed to be of the form given
in equations (1.8), (1.11), (1.12) and (1.13). Then using the boundary conditions on r = a, we can
determine the unknown constants as

βn = an+2λ

{
αn(λagn(λa)+2gn+1(λa))an

(4n+2−λ2a2)gn(λa)−2λagn+1(λa)
+2α′

n[gn+1(λa) fn(λa)+ fn+1(λa)gn(λa)]
(4n+2−λ2a2)gn(λa)−2λagn+1(λa)

}
, (2.4)

β′
n =−

{
(4n+2)αnan

(4n+2−λ2a2)gn(λa)−2λagn+1(λa)
+ α′

n[(4n+2−λ2a2) fn(λa)+2λafn+1(λa)]
(4n+2−λ2a2)gn(λa)−2λagn+1(λa)

}
, (2.5)

ϵ′n =− [(n−1) fn(λa)+λafn+1(λa)]
[(n−1)gn(λa)−λagn+1(λa)]

ϵn . (2.6)

The drag and torque on the sphere of radius a is therefore found to be

D = 4πµλ3

{
a4(aλg1(λa)+2g2(λa))α1

[2λag2(λa)− (6−λ2a2)g1(λa)]
+ 2a3( f1(λa)g2(λa)+ f2(λa)g1(λa))α′

1

[2λag2(λa)− (6−λ2a2)g1(λa)]

}

· (A11ı̂+B11 ȷ̂+ A10k̂)eλ
2νt, (2.7)

Torque= T = 0 . (2.8)

It can be easily show that

D = 2πµλ3a4(aλg1(λa)+2g2(λa))
[2λag2(λa)− (6−λ2a2)g1(λa)]

[V0]0 +

(
2πµ[6a3( f1(λa)g2(λa)+ f2(λa)g1(λa))
−a4λ(aλg1(λa)+2g2(λa))]

)
[2λag2(λa)− (6−λ2a2)g1(λa)]

[∇2V0]0

= 4π∇a(B0[V0]0 +a2B2[∇2V0]0), (2.9)

where

B0 =
(
1+λa+ λ2a2

2
+ λ3a3

6

)(
1+ λa

3

)−1
,
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B2 =
(

eλa

a2λ2 −
(
λa
6

+ 1
2
+ 1
λa

+ 1
λ2a2

))(
1+ λa

3

)−1
,

where V0 is the velocity of the undisturbed flow and [ ]0 is the evaluation at the center of the
sphere r = 0. We observe that when λ→ 0, the formula for torque and drag given (2.8) and (2.9),
reduce to the Faxén’s [2] laws for steady flows in shear-free case [4].

3. Shear-free Sphere in an Oscillatory Flow
Consider a shear-free sphere of radius a in an oscillatory flow of a viscous, incompressible
fluid. This amounts to considering the velocity and pressure to be of the form V0 =U eiωt and
p = Peiωt respectively in the above analysis. Here we seek a solution satisfying the conditions
(i) V = 0 on r = a, (ii) V =U eiωt as r →∞ and p → Peiωt as r →∞. Here if U =U ı̂, then

A0 = U
2

rsinθ cosϕeiωt, (3.1)

B0 = 0, (3.2)

where U is a constant. The modified velocity and pressure owing to the presence of the sphere
have the following representation

V =CurlCurl(rA)+Curl(rB),

p = p0 +µ ∂

∂r
(r(∇2 −λ2)A), λ2 = iω

ν
,

where

∇2(∇2 −λ2)A = 0, (∇2 −λ2)B = 0.

In this example

A = U
2

[
r+ a4λ(λag1(λa)+2g2(λa))

r2
[
(6−λ2a2)g1(λa)−2λag2(λa)

] − 6ag1(λr)
[(6−λ2a2)g1(λa)−2λag2(λa)]

]
sinθ cosϕeiωt,

(3.3)

B = 0. (3.4)

We rewrite A as

A = U
2

[
r−

{
a3

r2 +
(
λa
3

+1+ 2
λa

+ 2
λ2a2

)
+ 2aeλa−λr

λr

(
1+ 1

λr

)}(
1+ λa

3

)−1]
sinθ cosϕeiωt0. (3.5)

In the limit λ→ 0, it reduces to

A = U
2

(r−a)sinθ cosϕ . (3.6)

We can identify the distribution of singularities from the expression for A given in equation
(3.5). The image system consists of a potential dipole and a Stokeslet [5] due to a point force
F = −4π∇Uaeλaeiωt

1+λa
3

ı̂ at the origin. The drag is given by the following expression

D = 2πλ3∇a4U(λag1(λa)+2g2(λa))eiωt

[2λag2(λa)− (6−λ2a2)g1(λa)]
ı̂

= 4π∇Ua
(
1+λa+ λ2a2

2
+ λ3a3

6

)(
1+ λa

3

)−1
eiωt ı̂ . (3.7)
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The torque experienced by the shear-free sphere is zero. We can observe that the drag given
in (3.7) reduces to the formula for the drag experienced by a shear-free sphere of radius ‘a’ in a
steady, uniform flow in the limit λ→ 0 [4].
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