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1. Introduction
We consider the following boundary value problem involving the Caputo fractional derivative
with mixed boundary condition of the type:

(Dα
∗)y(t)=F(t, y(t)), t ∈ I = [0,b], 0<α< 1, (1)

with the given boundary conditions

m1 y(0)+m2 y(b)= d, (2)
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where F : I × X → X is continuous function and m1, m2 are real constants with m1 +m2 ̸= 0.
The element d ∈ X is given.

Several researchers have introduced many iteration methods for certain classes of operators
in the sense of their convergence, equivalence of convergence and rate of convergence etc. (see
[2–8,10,11,13–18,21–23]). The most of iterations devoted for both analytical and numerical
approaches. The S-iteration method, due to simplicity and fastness, has attracted the attention
and hence, it is used in this paper.

Authors are motivated by the above mentioned results and influenced by [1,24]. The main
objective of this paper is to extend the some results of the paper [9] by the use of normal
S-iteration method which establish the existence and uniqueness of solutions of the boundary
value problem (1)-(2) and other qualitative properties of solutions.

2. Preliminaries
Before proceeding to the statement of our main results, we shall set-forth some preliminaries
and hypotheses that will be used in our subsequent discussion.

Let X be a Banach space with norm ∥ · ∥ and I = [0,b] denotes an interval of the real line R.
We denote B = C1(I, X ), as a Banach space of all continuous functions from I into X , endowed
with the norm

∥y∥B = sup{∥y(t)∥ : y ∈ B}, t ∈ I.

Definition 1 ([20]). The Riemann-Liouville fractional integral (left-sided) of a function
h ∈ C1[a,b] of order α ∈R+ = (0,∞) is defined by

Iαa h(t)= 1
Γ(α)

∫ t

a
(t− s)α−1h(s)ds,

where Γ is the Euler gamma function.

Definition 2 ([20]). Let n−1<α≤ n, n ∈N. Then the expression

Dα
a h(t)= dn

dtn [In−α
a h(t)], t ∈ [a,b]

is called the (left-sided) Riemann-Liouville derivative of h of order α whenever the expression
on the right-hand side is defined.

Definition 3 ([19]). Let h ∈ Cn[a,b] and n−1<α≤ n, n ∈N. Then the expression

(Dα
∗a)h(t)= In−α

a h(n)(t), t ∈ [a,b]

is called the (left-sided) Caputo derivative of h of order α

Lemma 1 ([12]). If the function f = ( f1, · · · , fn) ∈ C1[a,b], then the initial value problems

(Dαi∗ )y(t)= f i(t, y1, · · · , yn), y(k)
i (0)= ci

k, i = 1,2, · · · ,n, k = 1,2, · · · ,mi,

where mi <αi ≤ mi +1 is equivalent to Volterra integral equations:

yi(t)=
mi∑
k=0

ci
k

tk

k!
+ Iαi f i(t, y1, · · · , yn), 1≤ i ≤ n.
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As a consequence of the above lemma and following results of [9, 19, 20, 25], it is easy to
observe that if y ∈ B, then y(t) satisfies the following integral equation

y(t)= d
m1 +m2

− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, y(s))ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1F(s, y(s))ds, t ∈ I (3)

which is equivalent to (1)-(2).

We need the following pair of known results:

Theorem 1 ([21, p. 194]). Let C be a nonempty closed convex subset of a Banach space X and
T : C → C a contraction operator with contractivity factor k ∈ [0,1) and fixed point x∗. Let αn

and βn be two real sequences in [0,1] such that α≤αn ≤ 1 and β≤βn < 1 for all n ∈N and for
some α,β> 0. For given u1 = v1 = w1 ∈ C, define sequences un,vn and wn in C as follows:

S-iteration process :

{
un+1 = (1−αn)Tun +αnT yn,
yn = (1−βn)un +βnTun, n ∈N

Picard iteration : vn+1 = Tvn, n ∈N
Mann iteration process : wn+1 = (1−βn)wn +βnTwn, n ∈N

Then, we have the following:
(a) ∥un+1 − x∗∥ ≤ kn[1− (1−k)αβ]n∥u1 − x∗∥, for all n ∈N.

(b) ∥vn+1 − x∗∥ ≤ kn∥v1 − x∗∥, for all n ∈N.

(c) ∥wn+1 − x∗∥ ≤ [1− (1−k)β]n∥w1 − x∗∥, for all n ∈N.

Moreover, the S-iteration process is faster than the Picard and Mann iteration processes.

In particular, for αn = 1, n ∈N, the S-iteration process can be written as:
y0 ∈ C,
yn+1 = Tzn,
zn = (1−βn)yn +βnT yn, n ∈N.

(4)

Lemma 2 ([23, p.4]). Let {βn}∞n=0 be a nonnegative sequence for which one assumes there exists
n0 ∈N, such that for all n ≥ n0 one has satisfied the inequality

βn+1 ≤ (1−µn)βn +µnγn, (5)

where µn ∈ (0,1), for all n ∈N,
∞∑

n=0
µn =∞ and γn ≥ 0, for all n ∈N. Then the following inequality

holds

0≤ lim sup
n→∞

βn ≤ lim sup
n→∞

γn. (6)

3. Existence and Uniqueness of Solutions via S-iteration
Now, we are able to state and prove the following main theorem which deals with the existence
and uniqueness of solutions of the equation (1)-(2).
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Theorem 2. Assume that there exists a function p ∈ C(I,R+) such that

∥F(t,u1)−F(t,v1)∥ ≤ p(t)∥u1 −v1∥. (7)

Let {ξk}∞k=0 be a real sequence in [0,1] satisfying
∞∑

k=0
ξk =∞. If

Θ=
[ |m2|
|m1 +m2|

Iαp(b)+ Iαp(t)
]
< 1,

then the equation (1)-(2) has a unique solution y ∈ B and normal S-iterative method (4) converges
to y ∈ B with the following estimate:

∥yk+1 − y∥B ≤ Θk+1

e
(1−Θ)

k∑
i=0

ξi

∥y0 − y∥B . (8)

Proof. Let y(t) ∈ B and define the operator

(T y)(t)= d
m1 +m2

− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, y(s))ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1F(s, y(s))ds, t ∈ I. (9)

Let {yk}∞k=0 be iterative sequence generated by normal S-iteration method (4) for the operator
given in (9).

We will show that yk → y as k →∞.

From (4), (9) and assumptions, we obtain

∥yk+1(t)− y(t)∥ = ∥(Tzk)(t)− (T y)(t)∥

=
∥∥∥ d

m1 +m2
− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, zk(s))ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1F(s, zk(s))ds

− d
m1 +m2

+ m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, y(s))ds

− 1
Γ(α)

∫ t

0
(t− s)α−1F(s, y(s))ds

∥∥∥
≤ |m2|

|m1 +m2|
1
Γ(α)

∫ b

0
(b− s)α−1∥F(s, zk(s))−F(s, y(s))∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1∥F(s, zk(s))−F(s, y(s))∥ds

≤ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1 p(s)∥zk(s)− y(s)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1 p(s)∥zk(s)− y(s)∥ds. (10)

Now, by taking supremum in the inequality (10), we obtain

∥yk+1 − y∥B ≤ |m2|∥zk − y∥B

|m1 +m2|
1
Γ(α)

∫ b

0
(b− s)α−1 p(s)ds+ ∥zk − y∥B

Γ(α)

∫ t

0
(t− s)α−1 p(s)ds

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 507–527, 2022



Some Results on Fractional Differential Equation With Mixed Boundary. . . : H.L. Tidke and G.S. Patil 511

≤
[ |m2|
|m1 +m2|

Iαp(b)+ Iαp(t)
]
∥zk − y∥B

≤Θ∥zk − y∥B. (11)

Now, we estimate

∥zk(t)− y(t)∥ = [(1−ξk)∥yk(t)− y(t)∥+ξk∥(T yk)(t)− (T y)(t)∥]

≤ (1−ξk)∥yk(t)− y(t)∥+ξk

{ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1 p(s)∥yk(s)− y(s)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1 p(s)∥yk(s)− y(s)∥ds

}
. (12)

Similarly, by taking supremum in the inequality (12) to get

∥zk − y∥B ≤
[
1−ξk(1− |m2|

|m1 +m2|
Iαp(b)+ Iαp(t))

]
∥yk − y∥B

= [1−ξk(1−Θ)]∥yk − y∥B. (13)

Therefore, using (13) in (11), we have

∥yk+1 − y∥B ≤Θ[1−ξk(1−Θ)]∥yk − y∥B. (14)

Thus, by induction, we get

∥yk+1 − y∥B ≤Θk+1
k∏

j=0
[1−ξk(1−Θ)]∥y0 − y∥B. (15)

Since ξk ∈ [0,1] for all k ∈N, the definition of Θ yields ξk ≤ 1 and Θ< 1

⇒ ξkΘ< ξk

⇒ ξk(1−Θ)< 1, for all k ∈N. (16)

From the classical analysis, we know that

1− x ≤ e−x = 1− x+ x2

2!
− x3

3!
+·· · , x ∈ [0,1].

Hence by utilizing this fact with (16) in (15), we obtain

∥yk+1 − y∥B ≤Θk+1e
−(1−Θ)

k∑
j=0

ξ j∥y0 − y∥B

= Θk+1

e
(1−Θ)

k∑
i=0

ξi

∥y0 − y∥B. (17)

This is (8). Since
∞∑

k=0
ξk =∞,

e
−(1−Θ)

k∑
j=0

ξ j → 0 as k →∞ . (18)

Hence using this, the inequality (17) implies lim
k→∞

∥yk+1 − y∥B = 0 and therefore, we have yk → y

as k →∞.

Remark. It is an interesting to note that the inequality (17) gives the bounds in terms of known
functions, which majorizes the iterations for solutions of the equation (1)-(2) for t ∈ I .
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4. Continuous Dependence via S-iteration
In this section, we shall deal with continuous dependence of solution of the problem (1) on the
boundary data, functions involved therein and also on parameters.

4.1 Dependence on Boundary Data
Suppose y(t) and ȳ(t) are solutions of (1) with boundary data

m1 y(0)+m2 y(b)= d (19)

and

m1 ȳ(0)+m2 ȳ(b)= d̄, (20)

where d, d̄ are given elements in X .

Then looking at the steps as in the proof of Theorem 2, we define the operator for the equations
(1)-(20)

(T̄ ȳ)(t)= d̄
m1 +m2

− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, ȳ(s))ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1F(s, ȳ(s))ds, t ∈ I. (21)

We shall deal with the continuous dependence of solutions of equation (1) on boundary data.

Theorem 3. Suppose the function F in equation (1) satisfies the condition (7). Consider the
sequences {yk}∞k=0 and { ȳk}∞k=0 generated normal S-iterative method associated with operators T
in (9) and T̄ in (21), respectively with the real sequence {ξk}∞k=0 in [0,1] satisfying 1

2 ≤ ξk for all
k ∈N. If the sequence { ȳk}∞k=0 converges to ȳ, then we have

∥y− ȳ∥B ≤
3
( ∥d−d̄∥
|m1+m2|

)
(1−Θ)

. (22)

Proof. Suppose the sequences {yk}∞k=0 and { ȳk}∞k=0 generated normal S-iterative method
associated with operators T in (9) and T̄ in (21), respectively with the real sequence {ξk}∞k=0 in
[0,1] satisfying 1

2 ≤ ξk for all k ∈N. From iteration (4) and equations (9); (21) and assumptions,
we obtain

∥yk+1(t)− ȳk+1(t)∥ = ∥(Tzk)(t)− (T̄ z̄k)(t)∥

=
∥∥∥ d

m1 +m2
− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, zk(s))ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1F(s, zk(s))ds

− d̄
m1 +m2

+ m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, z̄k(s))ds

− 1
Γ(α)

∫ t

0
(t− s)α−1F(s, z̄k(s))ds

∥∥∥
≤

( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1∥F(s, zk(s))−F(s, z̄k(s))∥ds

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 507–527, 2022



Some Results on Fractional Differential Equation With Mixed Boundary. . . : H.L. Tidke and G.S. Patil 513

+ 1
Γ(α)

∫ t

0
(t− s)α−1∥F(s, zk(s))−F(s, z̄k(s))∥ds

≤
( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds. (23)

Recalling the equations (11) and (13), the above inequality becomes

∥yk+1 − ȳk+1∥B ≤
( ∥d− d̄∥
|m1 +m2|

)
+Θ∥zk − z̄k∥B, (24)

and similarly, it is seen that

∥zk − z̄k∥B ≤ ξk

( ∥d− d̄∥
|m1 +m2|

)
+ [1−ξk(1−Θ)]∥yk − ȳk∥B. (25)

Therefore, using (25) in (24) and using hypothesis Θ< 1, and 1
2 ≤ ξk for all k ∈N, the resulting

inequality becomes

∥yk+1 − ȳk+1∥B ≤
( ∥d− d̄∥
|m1 +m2|

)
+∥zk − z̄k∥B

≤
( ∥d− d̄∥
|m1 +m2|

)
+ξk

( ∥d− d̄∥
|m1 +m2|

)
+ [1−ξk(1−Θ)]∥yk − ȳk∥B

≤ 2ξk

( ∥d− d̄∥
|m1 +m2|

)
+ξk

( ∥d− d̄∥
|m1 +m2|

)
+ [1−ξk(1−Θ)]∥yk − ȳk∥B

≤ [1−ξk(1−Θ)]∥yk − ȳk∥B +ξk(1−Θ)
3
( ∥d−d̄∥
|m1+m2|

)
(1−Θ)

. (26)

We denote

βk = ∥yk − ȳk∥B,

µk = ξk(1−Θ) ∈ (0,1),

γk =
3
( ∥d−d̄∥
|m1+m2|

)
(1−Θ)

≥ 0.

The assumption 1
2 ≤ ξk for all k ∈ N implies

∞∑
n=0

ξk =∞. Now, it can be easily seen that (26)

satisfies all the conditions of Lemma 2 and hence we have

0≤ lim sup
k→∞

βk ≤ lim sup
k→∞

γk

⇒ 0≤ lim sup
k→∞

∥yk − ȳk∥B ≤ lim sup
k→∞

3
( ∥d−d̄∥
|m1+m2|

)
(1−Θ)

⇒ 0≤ lim sup
k→∞

∥yk − ȳk∥B ≤
3
( ∥d−d̄∥
|m1+m2|

)
(1−Θ)

. (27)
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Using the assumption lim
k→∞

yk = y, lim
k→∞

ȳk = ȳ, we get from (27) that

∥y− ȳ∥B ≤
3
( ∥d−d̄∥
|m1+m2|

)
(1−Θ)

, (28)

which shows that the dependency of solutions of BVPs (1)-(2) and (1)-(20) on given boundary
data.

4.2 Closeness of Solution via S-iteration
Consider the problem (1)-(2) and the corresponding problem

(Dα
∗) ȳ(t)= F̄(t, ȳ(t)), t ∈ I, 0<α< 1, (29)

with the given boundary condition

m1 ȳ(0)+m2 ȳ(b)= d̄, (30)

where F̄ is defined as F and d̄ is given element in X .

Then looking at the steps as in the proof of Theorem 2, we define the operator for the equation
(29)-(30)

(T̄ ȳ)(t)= d̄
m1 +m2

− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F̄(s, ȳ(s))ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1F̄(s, ȳ(s))ds, t ∈ I. (31)

The next theorem deals with the closeness of solutions of the problems (1)-(2) and (29)-(30).

Theorem 4. Consider the sequences {yk}∞k=0 and { ȳk}∞k=0 generated normal S-iterative method
associated with operators T in (9) and T̄ in (31), respectively with the real sequence {ξk}∞k=0 in
[0,1] satisfying 1

2 ≤ ξk for all k ∈N. Assume that
(i) all conditions of Theorem 2 hold, and y(t) and ȳ(t) are solutions of (1)-(2) and (29)-(30),

respectively.

(ii) there exist non negative constant ϵ such that

∥F(t,u1)− F̄(t,u1)∥ ≤ ϵ, for all t ∈ I. (32)

If the sequence { ȳk}∞k=0 converges to ȳ, then we have

∥y− ȳ∥B ≤
3
[( ∥d−d̄∥

|m1+m2|
)
+ϵ

( |m2|
|m1+m2| +1

)
bα

Γ(α+1)

]
(1−Θ)

. (33)

Proof. Suppose the sequences {yk}∞k=0 and { ȳk}∞k=0 generated normal S-iterative method
associated with operators T in (9) and T̄ in (31), respectively with the real sequence {ξk}∞k=0 in
[0,1] satisfying 1

2 ≤ ξk for all k ∈N. From iteration (4) and equations (9); (31) and hypotheses,
we obtain

∥yk+1(t)− ȳk+1(t)∥ = ∥(Tzk)(t)− (T̄ z̄k)(t)∥

=
∥∥∥ d

m1 +m2
− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, zk(s))ds
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+ 1
Γ(α)

∫ t

0
(t− s)α−1F(s, zk(s))ds

− d̄
m1 +m2

+ m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F̄(s, z̄k(s))ds

− 1
Γ(α)

∫ t

0
(t− s)α−1F̄(s, z̄k(s))ds

∥∥∥
≤

( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1∥F(s, zk(s))− F̄(s, z̄k(s))∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1∥F(s, zk(s))− F̄(s, z̄k(s))∥ds

≤
( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1∥F(s, z̄k(s))− F̄(s, z̄k(s))∥ds

+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1∥F(s, zk(s))−F(s, z̄k(s))∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1∥F(s, z̄k(s))− F̄(s, z̄k(s))∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1∥F(s, zk(s))−F(s, z̄k(s))∥ds

≤
( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1ϵds+ 1

Γ(α)

∫ t

0
(t− s)α−1ϵds

+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds

≤
( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

ϵbα

Γ(α+1)
+ ϵtα

Γ(α+1)

+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds

≤
( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

ϵbα

Γ(α+1)
+ ϵbα

Γ(α+1)

+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds

=
( ∥d− d̄∥
|m1 +m2|

)
+ϵ

( |m2|
|m1 +m2|

+1
) bα

Γ(α+1)

+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 507–527, 2022



516 Some Results on Fractional Differential Equation With Mixed Boundary. . . : H.L. Tidke and G.S. Patil

+ 1
Γ(α)

∫ t

0
(t− s)α−1 p(s)∥zk(s)− z̄k(s)∥ds. (34)

Recalling the derivations obtained in equations (12) and (13), the above inequality becomes

∥yk+1 − y∥B ≤
[( ∥d− d̄∥
|m1 +m2|

)
+ϵ

( |m2|
|m1 +m2|

+1
) bα

Γ(α+1)

]
+Θ∥zk − z̄k∥B, (35)

and similarly, it is seen that

∥zk − z̄k∥B ≤ ξk

[( ∥d− d̄∥
|m1 +m2|

)
+ϵ

( |m2|
|m1 +m2|

+1
) bα

Γ(α+1)

]
+ [1−ξk(1−Θ)]∥yk − ȳk∥B. (36)

Therefore, using (36) in (35) and using hypothesis Θ< 1, and 1
2 ≤ ξk for all k ∈N, the resulting

inequality becomes

∥yk+1 − ȳk+1∥B ≤
[( ∥d− d̄∥
|m1 +m2|

)
+ϵ

( |m2|
|m1 +m2|

+1
) bα

Γ(α+1)

]
+∥zk − z̄k∥B

≤
[( ∥d− d̄∥
|m1 +m2|

)
+ϵ

( |m2|
|m1 +m2|

+1
) bα

Γ(α+1)

]
+ξk

[( ∥d− d̄∥
|m1 +m2|

)
+ϵ

( |m2|
|m1 +m2|

+1
) bα

Γ(α+1)

]
+ [1−ξk(1−Θ)]∥yk − ȳk∥B

≤ 2ξk

[( ∥d− d̄∥
|m1 +m2|

)
+ϵ

( |m2|
|m1 +m2|

+1
) bα

Γ(α+1)

]
+ξk

[( ∥d− d̄∥
|m1 +m2|

)
+ϵ

( |m2|
|m1 +m2|

+1
) bα

Γ(α+1)

]
+ [1−ξk(1−Θ)]∥yk − ȳk∥B

≤ [1−ξk(1−Θ)]∥yk − ȳk∥B +ξk(1−Θ)
3
[( ∥d−d̄∥

|m1+m2|
)
+ϵ

( |m2|
|m1+m2| +1

)
bα

Γ(α+1)

]
(1−Θ)

. (37)

We denote

βk = ∥yk − ȳk∥B,

µk = ξk(1−Θ) ∈ (0,1),

γk =
3
[( ∥d−d̄∥

|m1+m2|
)
+ϵ

( |m2|
|m1+m2| +1

)
bα

Γ(α+1)

]
(1−Θ)

≥ 0.

The assumption 1
2 ≤ ξk for all k ∈N implies

∞∑
n=0

ξk =∞. Now, it can be easily observed that (37)

satisfies all the conditions of Lemma 2 and hence we have

0≤ lim sup
k→∞

βk ≤ lim sup
k→∞

γk

⇒ 0≤ lim sup
k→∞

∥yk − ȳk∥B ≤ lim sup
k→∞

3
[( ∥d−d̄∥

|m1+m2|
)
+ϵ

( |m2|
|m1+m2| +1

)
bα

Γ(α+1)

]
(1−Θ)

⇒ 0≤ lim sup
k→∞

∥yk − ȳk∥B ≤
3
[( ∥d−d̄∥

|m1+m2|
)
+ϵ

( |m2|
|m1+m2| +1

)
bα

Γ(α+1)

]
(1−Θ)

. (38)
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Using the assumption lim
k→∞

yk = y, lim
k→∞

ȳk = ȳ, we get from (38) that

∥y− ȳ∥B ≤
3
[( ∥d−d̄∥

|m1+m2|
)
+ϵ

( |m2|
|m1+m2| +1

)
bα

Γ(α+1)

]
(1−Θ)

, (39)

which shows that the dependency of solutions of BVPs (1)-(2) and (29)-(30) on the function
involved on the right hand side of the given equation.

Remark. The inequality (39) relates the solutions of the problems (1)-(2) and (29)-(30) in the
sense that if F and F̄ are close as ϵ→ 0, then not only the solutions of the problems (1)-(2) and
(29)-(30) are close to each other (i.e. ∥y− ȳ∥B → 0), but also depend continuously on the functions
involved therein and boundary data.

4.3 Dependence on Parameters
We next consider the following problems

(Dα
∗)y(t)=F(t, y(t),µ1), t ∈ I, 0<α< 1, (40)

with the given boundary condition

m1 y(0)+m2 y(b)= d (41)

and

(Dα
∗) ȳ(t)=F(t, ȳ(t),µ2), t ∈ I, 0<α< 1, (42)

with the given boundary condition

m1 ȳ(0)+m2 ȳ(b)= d̄ (43)

where F : I × X ×R→ X is continuous function, d, d̄ are given elements in X and constants µ1,
µ2 are real parameters.

Let y(t), ȳ(t) ∈ B and following steps from the proof of Theorem 2, define the operators for the
equations (40) and (42), respectively

(T y)(t)= d
m1 +m2

− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, y(s),µ1)ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1F(s, y(s),µ1)ds, t ∈ I (44)

and

(T̄ ȳ)(t)= d̄
m1 +m2

− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, ȳ(s),µ2)ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1F(s, ȳ(s),µ2)ds, t ∈ I. (45)

The following theorem discuss the continuous dependency of solutions on parameters.

Theorem 5. Consider the sequences {yk}∞k=0 and { ȳk}∞k=0 generated normal S-iterative method
associated with operators T in (44) and T̄ in (45), respectively with the real sequence {ξk}∞k=0 in
[0,1] satisfying 1

2 ≤ ξk for all k ∈N. Assume that
(i) y(t) and ȳ(t) are solutions of (40)-(41) and (42)-(43), respectively.
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(ii) the function F satisfy the conditions:

∥F(t,u1,µ1)−F(t,v1,µ1)∥ ≤ p̄(t)∥u1 −v1∥
and

∥F(t,u1,µ1)−F(t,u1,µ2)∥ ≤ r(t)|µ1 −µ2|,
where p̄, r ∈ C(I,R+).

If the sequence { ȳn}∞n=0 converges to ȳ, then we have

∥y− ȳ∥B ≤
3
[( ∥d−d̄∥

|m1+m2|
)
+|µ1 −µ2|

( |m2|
|m1+m2| I

αr(b)+ Iαr(t)
)]

(1− Θ̄)
, (46)

where Θ̄=
[ |m2|
|m1+m2| I

α p̄(b)+ Iα p̄(t)
]
< 1.

Proof. Suppose the sequences {yk}∞k=0 and { ȳk}∞n=0 generated normal S-iterative method
associated with operators T in (44) and T̄ in (45), respectively with the real sequence {ξk}∞k=0 in
[0,1] satisfying 1

2 ≤ ξk for all k ∈N. From iteration (4) and equations (44); (45) and hypotheses,
we obtain

∥yk+1(t)− ȳk+1(t)∥ = ∥(Tzk)(t)− (T̄ z̄k)(t)∥

=
∥∥∥ d

m1 +m2
− m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, zk(s),µ1)ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1F(s, zk(s),µ1)ds

− d̄
m1 +m2

+ m2

m1 +m2

1
Γ(α)

∫ b

0
(b− s)α−1F(s, z̄k(s),µ2)ds

− 1
Γ(α)

∫ t

0
(t− s)α−1F(s, z̄k(s),µ2)ds

∥∥∥
≤

( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1∥F(s, zk(s),µ1)−F(s, z̄k(s),µ2)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1∥F(s, zk(s),µ1)−F(s, z̄k(s),µ2)∥ds

≤
( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1∥F(s, z̄k(s),µ1)−F(s, z̄k(s),µ2)∥ds

+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1∥F(s, zk(s),µ1)−F(s, z̄k(s),µ1)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1∥F(s, z̄k(s),µ1)−F(s, z̄k(s),µ2)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1∥F(s, zk(s),µ1)−F(s, z̄k(s),µ1)∥ds

≤
( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1r(s)|µ1 −µ2|ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1r(s)|µ1 −µ2|ds
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+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1 p̄(s)∥zk(s)− z̄k(s)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1 p̄(s)∥zk(s)− z̄k(s)∥ds

≤
( ∥d− d̄∥
|m1 +m2|

)
+ |m2|
|m1 +m2|

|µ1 −µ2|Iαr(b)+|µ1 −µ2|Iαr(t)

+ |m2|
|m1 +m2|

1
Γ(α)

∫ b

0
(b− s)α−1 p̄(s)∥zk(s)− z̄k(s)∥ds

+ 1
Γ(α)

∫ t

0
(t− s)α−1 p̄(s)∥zk(s)− z̄k(s)∥ds. (47)

Recalling the derivations obtained in equations (12) and (13), the above inequality becomes

∥yk+1 − ȳk+1∥B ≤
[( ∥d− d̄∥
|m1 +m2|

)
+|µ1 −µ2|

( |m2|
|m1 +m2|

Iαr(b)+ Iαr(t)
)]

+ Θ̄∥zk − z̄k∥B (48)

and similarly, it is seen that

∥zk − z̄k∥B ≤ ξk

[( ∥d− d̄∥
|m1 +m2|

)
+|µ1 −µ2|

( |m2|
|m1 +m2|

Iαr(b)+ Iαr(t)
)]

+ [1−ξk(1− Θ̄)]∥yk − ȳk∥B.

(49)

Therefore, using (49) in (48) and using hypothesis Θ̄< 1, and 1
2 ≤ ξk for all k ∈N, the resulting

inequality becomes

∥yk+1 − ȳk+1∥B ≤
[( ∥d− d̄∥
|m1 +m2|

)
+|µ1 −µ2|

( |m2|
|m1 +m2|

Iαr(b)+ Iαr(t)
)]

+∥zk − z̄k∥B

≤
[( ∥d− d̄∥
|m1 +m2|

)
+|µ1 −µ2|

( |m2|
|m1 +m2|

Iαr(b)+ Iαr(t)
)]

+ξk

[( ∥d− d̄∥
|m1 +m2|

)
+|µ1−µ2|

( |m2|
|m1 +m2|

Iαr(b)+ Iαr(t)
)]
+ [1−ξk(1− Θ̄)]∥yk− ȳk∥B

≤ 2ξk

[( ∥d− d̄∥
|m1 +m2|

)
+|µ1 −µ2|

( |m2|
|m1 +m2|

Iαr(b)+ Iαr(t)
)]

+ξk

[( ∥d− d̄∥
|m1+m2|

)
+|µ1−µ2|

( |m2|
|m1 +m2|

Iαr(b)+ Iαr(t)
)]

+ [1−ξk(1− Θ̄)]∥yk− ȳk∥B

≤ [1−ξk(1−Θ̄)]∥yk− ȳk∥B +ξk(1−Θ̄)
3
[( ∥d−d̄∥

|m1+m2|
)
+|µ1−µ2|

( |m2|
|m1+m2| I

αr(b)+ Iαr(t)
)]

(1− Θ̄)
.

(50)
We denote

βk = ∥yk − ȳk∥B,

µk = ξk(1− Θ̄) ∈ (0,1),

γk =
3
[( ∥d−d̄∥

|m1+m2|
)
+|µ1 −µ2|

( |m2|
|m1+m2| I

αr(b)+ Iαr(t)
)]

(1− Θ̄)
≥ 0.
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The assumption 1
2 ≤ ξk for all k ∈ N implies

∞∑
n=0

ξk =∞. Now, it can be easily seen that (50)

satisfies all the conditions of Lemma 2 and hence we have

0≤ lim sup
k→∞

βk ≤ lim sup
k→∞

γk

⇒ 0≤ lim sup
k→∞

∥yk − ȳk∥B ≤ lim sup
k→∞

3
[( ∥d−d̄∥

|m1+m2|
)
+|µ1 −µ2|

( |m2|
|m1+m2| I

αr(b)+ Iαr(t)
)]

(1− Θ̄)

⇒ 0≤ lim sup
k→∞

∥yk − ȳk∥B ≤
3
[( ∥d−d̄∥

|m1+m2|
)
+|µ1 −µ2|

( |m2|
|m1+m2| I

αr(b)+ Iαr(t)
)]

(1− Θ̄)
. (51)

Using the assumption lim
k→∞

yk = y, lim
k→∞

ȳk = ȳ, we get from (51) that

∥y− ȳ∥B ≤
3
[( ∥d−d̄∥

|m1+m2|
)
+|µ1 −µ2|

( |m2|
|m1+m2| I

αr(b)+ Iαr(t)
)]

(1− Θ̄)
, (52)

which shows the dependence of solutions of the problem (1)-(2) is on parameters µ1 and µ2.

Remark. The result dealing with the property of a solution called “dependence of solutions on
parameters”. Here the parameters are scalars and note that the boundary conditions do not
involve parameters. The dependence on parameters are an important aspect in various physical
problems.

5. Example
We consider the following problem:

(Dα
∗)y(t)= 3t

5

[ t−sin(y(t))
2

]
, t ∈ [0,1], 0<α< 1, (53)

with the given boundary condition

y(0)+ y(1)= 1. (54)

Comparing this equation with the equation (1), we get

F ∈ C(I ×R,R) with F(t, y(t))= 3t
5

[ t−sin(y(t))
2

]
.

Now, we have

|F(t, y(t))−F(t, ȳ(t))| =
∣∣∣3t

5

[ t−sin(y(t))
2

]
− 3t

5

[ t−sin( ȳ(t))
2

]∣∣∣
≤

∣∣∣3t
5

∣∣∣ ∣∣∣ t−sin(y(t))
2

− t−sin( ȳ(t))
2

∣∣∣
≤ 3t

10
|sin(y(t))−sin( ȳ(t))|. (55)

Taking sup norm, we obtain

|F(t, y(t))−F(t, ȳ(t))| ≤ 3t
10

|y− ȳ|, (56)

where p(t)= 3t
10 .
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5.1 Existence and Uniqueness of Solutions
Therefore, we the estimate

Θ=
[ |m2|
|m1 +m2|

Iαp(b)+ Iαp(t)
]

=
[1

2
Iαp(b)+ Iαp(t)

]
=

[1
2

Iαp(1)+ Iα
3t
10

]
= 3

10

[1
2

1
Γ(α)

∫ 1

0
(1− s)α−1sds+ 1

Γ(α)

∫ t

0
(t− s)α−1sds

]
= 3

10

[1
2

1α+1

Γ(α+2)
+ tα+1

Γ(α+2)

]
≤ 3

10

[1
2

1
Γ(α+2)

+ 1
Γ(α+2)

]
(t ≤ 1)

= 3
10

[1
2
+1

] 1
Γ(α+2)

= 3×3
10×2

1
Γ(α+2)

= 9
20

1
Γ(α+2)

. (57)

Therefore, the condition Θ< 1 is satisfied only if 9
20

1
Γ(α+2) < 1.

In particular, we choose α= 1
2 , then we have

9
20

1
Γ(α+2)

= 9
20

1

Γ
(

1
2 +2

)
= 9

20
1

Γ
(

5
2

)
= 9

20
1

3
p
π

4

= 3
5

1p
π

≃ 0.3385

< 1 .

We define the operator T : B → B for the given problem by

(T y)(t)= 1
2
− 1

2
1

Γ
(

1
2

) ∫ 1

0
(1− s)

1
2−1F(s, y(s))ds

+ 1

Γ
(

1
2

) ∫ t

0
(t− s)

1
2−1F(s, y(s))ds
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= 1
2
− 1

2
1p
π

∫ 1

0
(1− s)−

1
2

3s
5

[ s−sin(y(s))
2

]
ds

+ 1p
π

∫ t

0
(t− s)−

1
2

3s
5

[ s−sin(y(s))
2

]
ds, t ∈ I. (58)

Since all conditions of Theorem 2 are satisfied and so by its conclusion, the sequence {yn}
associated with the normal S-iterative method (4) for the operator T in (58) converges to a
unique solution y ∈ B.

5.2 Error Estimate
Further, we also have for any y0 ∈ B

|yk+1 − y|B ≤ Θk+1

e
(1−Θ)

k∑
i=0

ξi

|y0 − y|B

≤

[
3
5

1p
π

]k+1

e

[
1− 3

5
1p
π

]
k∑

i=0
ξi

|y0 − y|, (59)

where we have chosen ξi = 1
1+i ∈ [0,1]. The estimate obtained in (59) is called a bound for the

error (due to truncation of computation at the k−th iteration).

5.3 Continuous Dependence
One can check easily that the continuous dependence of solutions of equations (1) on boundary
data. Indeed, for y(0)+ y(1)= d = 1, ȳ(0)+ ȳ(1)= d̄ = 1

2 , we have

|y− ȳ|B ≤
3
( |d−d̄|
|m1+m2|

)
(1−Θ)

≤
3
(

1− 1
2

2

)
(
1− 3

5
1p
π

)
≤ 3

4
(
1− 3

5
1p
π

)
≃ 1.1338. (60)

5.4 Closeness of Solutions
Next, we consider the perturbed equation:

(D
1
2∗ ) ȳ(t)= 3t

5

[ t−sin( ȳ(t))
2

]
− t+ 1

7
, t ∈ [0,1], (61)

with the given boundary condition

ȳ(0)+ ȳ(1)= d̄ = 1
2

. (62)

Similarly, comparing it with the equation (29), we have

F̄(t, ȳ(t))= 3t
5

[ t−sin( ȳ(t))
2

]
− t+ 1

7
.
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One can easily define the mapping T̄ : B → B by

(T̄ ȳ)(t)= 1
4
− 1

2
1

Γ
(

1
2

) ∫ 1

0
(1− s)−

1
2

{3s
5

[ s−sin( ȳ(s))
2

]
− s+ 1

7

}
ds

+ 1

Γ
(

1
2

) ∫ t

0
(t− s)−

1
2

{3s
5

[ s−sin( ȳ(s))
2

]
− s+ 1

7

}
ds, t ∈ I. (63)

In perturbed equation, all conditions of Theorem 2 are also satisfied and so by its conclusion,
the sequence { ȳn} associated with the normal S-iterative method (4) for the operator T̄ in (63)
converges to a unique solution ȳ ∈ B.

Now, we have the following estimate:

|F(t, y(t))− F̄(t, y(t))| =
∣∣∣3t

5

[ t−sin(y(t))
2

]
− 3t

5

[ t−sin(y(t))
2

]
+ t− 1

7

∣∣∣
=

∣∣∣t− 1
7

∣∣∣
≤ |t|+ 1

7

≤ 1+ 1
7

(t ≤ 1)

= 8
7
= ϵ. (64)

Consider the sequences {yn}∞n=0 with yn → y as n → ∞ and { ȳn}∞n=0 with ȳn → ȳ as n → ∞
generated normal S-iterative method associated with operators T in (58) and T̄ in (63),
respectively with the real sequence {ξn}∞n=0 in [0,1] satisfying 1

2 ≤ ξn for all n ∈N. Then we have
from Theorem 3 that for b = 1, d = 1, d̄ = 1

2 , ϵ= 8
7

|x− x̄|B ≤
3
[( |d−d̄|

|m1+m2|
)
+ϵ

( |m2|
|m1+m2| +1

)
bα

Γ(α+1)

]
(1−Θ)

≤
3
[

1
4 + 8

7

(
1
2 +1

)
1

Γ( 1
2+1)

]
(
1− 3

5
1p
π

)

≤
3
[

1
4 + 12

7
1

Γ( 3
2 )

]
(
1− 3

5
1p
π

)

≤
3
[

1
4 + 12

7
1

1
2
p
π

]
(
1− 3

5
1p
π

)

≤
3
[

1
4 + 24

7
1p
π

]
(
1− 3

5
1p
π

)
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≃ 6.5531
0.6615

≃ 9.9064. (65)

This shows that the closeness and dependency of solutions on functions involved therein.

5.5 Dependence on Parameters
Finally, we shall prove the dependency of solutions on real parameters.

We consider the following integral equations involving real parameters µ1, µ2:

D∗
1
2 y(t)= 3t

5

[
t−sin(y(t))

2
+µ1

]
, t ∈ [0,1], (66)

with the given boundary condition

y(0)+ y(1)= d = 1 (67)

and

D∗
1
2 ȳ(t)= 3t

5

[
t−sin( ȳ(t))

2
+µ2

]
, t ∈ [0,1], (68)

with the given boundary condition

ȳ(0)+ ȳ(1)= d̄ = 1
2

. (69)

Following above discussion, one can observe that p(t)= p̄(t)= r(t)= 3t
5 and therefore, we have

Θ= Θ̄. Hence by making similar arguments and from Theorem 5, one can have (a = 0, b = 1,
p(t)= p̄(t)= r(t)= 3t

5 )

|y− ȳ|B ≤
3

[( |d−d̄|
|m1+m2|

)
+|µ1 −µ2|

( |m2|
|m1+m2| I

αr(b)+ Iαr(t)
)]

(1− Θ̄)

≤
3
[( |1− 1

2 |
2

)
+|µ1 −µ2|

(
1
2 Iαr(1)+ Iαr(t)

)]
(1−Θ)

≤
3
[

1
4 +|µ1 −µ2|

(
1
2 I

1
2 r(1)+ I

1
2 r(t)

)]
(
1− 3

5
p
π

)

≤
3
[

1
4 +|µ1 −µ2| 9

20
1

Γ(α+2)

]
(
1− 3

5
p
π

) . (70)

In particular, if we choose µ1 = 1, µ 2 = 1
2 , then we have from (70) that

∥y− ȳ∥B ≤
3
[

1
4 +|µ1 −µ2| 9

20
1

Γ(α+2)

]
(
1− 3

5
p
π

)

≤
3
[

1
4 +

∣∣∣1− 1
2

∣∣∣ 9
20

1
Γ( 1

2+2)

]
(
1− 3

5
p
π

)
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≤

3
[

1
4 + 9

40
1

Γ

(
5
2

)]
(
1− 3

5
p
π

)

≤
3
[

1
4 + 9

40
1

3
p
π

4

]
(
1− 3

5
p
π

)

≤
3
[

1
4 + 3

10
p
π

]
(
1− 3

5
p
π

)
≤ 1.2578

0.6615
≃ 1.9014. (71)

This proves that the dependency of solutions on both boundary data and real parameters.
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