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1. Introduction
One of the most significant topic in functional analysis is fixed point theory. The whole fixed
point theory based on very influential theorem Banach Contraction Principle [4]. Since then
many researchers worked on it and develop results in different spaces like Metric space, Hilbert
space, normed space, G-metric space, b-metric space, cone metric space etc. Further, fixed point
theorems are extended in quasi-metric space.

Definition 1.1 ([16]). The function q : X × X → [0,∞) is a quasi-metric if it satisfies

(i) q(a,b)= 0⇔ a = b, for all a,b ∈ X .

(ii) q(a,b)≤ q(a, c)+ q(c,b), for all a,b, c ∈ X .

The pair (X , q)is called quasi-metric space.
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The study of fixed point theorems on quasi-metric space added by Aydi et al. [3], Bilgili et
al. [6], Shatanawi et al. [14,15], and Alegre et al. [1].

Later, F-quasi metric space is defined as under

Definition 1.2 ([11]). (X ,δq) is named as F-quasi metric space and δq is named as F-quasi
metric, if a function δq : X × X → [0,∞), a constant B ∈ [0,+∞) and a f ∈ F ,so that
(δ1) δq(x1, x2)= 0⇔ x1 = x2 ∀ x1, x2 ∈ X ,

(δ2) δq(x1, x2)> 0⇒ f (δq(x1, x2))≤ f
(

N−1∑
i=1

δq(vi,vi+1)
)
+B.

For every N ∈N with N ≥ 2, ∀ x1, x2 ∈ X and for all (vi)N
i=1 ⊂ X with (v1,vN)= (x1, x2).

The notion of coupled fixed point was initiated by Guo and Laxmikantham [10]. Berinde and
Borcut [5] extended this theory to triple fixed point. Karapınar et al. [11,12] proved quadruple
fixed point theorem in partial order metric space. This theory is further stretched for n-tuple
fixed point theorems by Ertürk and Karakaya [7,8]. The n-dimensional theory is very useful in
many engineering problems.

Definition 1.3 ([7]). Assume X be a non-empty set and let

F :
n∏

i=1
X i → X ,

then (x1, x2, . . . , xn) ∈∏n
i=1 X i is termed as n-tuple fixed point if

x1 = F(x1, x2, . . . , xn)
x2 = F(x2, x3, . . . , xn, x1)
x3 = F(x3, x4, . . . , xn, x1, x2)

...
xn = F(xn, x1, . . . , xn−1) .

The purpose of this paper is to establish the results on n-tuple fixed point which will be
generalization of above results. We have proved n-tuple fixed point theorem in F-quasi metric
space for a new contractive condition.

The following definitions are required to discuss to understand this paper.

Definition 1.4 ([2]). A function f : (0,∞)→ R is called non-decreasing function if f (x1)≤ f (x2),
for all x1, x2 ∈ [0,+∞). Also f is said to be logarithmic-like when every positive sequence
{xn}satisfies

lim
n→∞xn = 0⇔ lim

n→∞ f (xn)=−∞.

In the sequel F is set of functions f .

Definition 1.5 ([11]). Consider F-quasi metric space (X ,δq). Then {xn} in X is known as right
convergent sequence (left convergent sequence) to x ∈ X if

lim
n→∞δq(x, xn)= 0 , lim

n→∞δq(xn, x)= 0.
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Definition 1.6 ([11]). When a sequence {xn}in X is both right and left convergent, then it is
said to be bi-convergent sequence.

Definition 1.7 ([11]). Let {xn} be sequence in F-quasi metric space (X ,δq). Then {xn} is a right
Cauchy sequence (left Cauchy sequence) if

lim
n,m→∞δq(xn, xm)= 0 lim

n,m→∞δq(xm, xn)= 0.

{xn} is a called bi-complete Cauchy sequence if it is left and right both Cauchy sequences.

Definition 1.8 ([13]). The functions J : X × X → X and K : X → X are commutative if

J(K x,K y)= K(J(x, y)), ∀ x, y ∈ X .

2. Main Result
Theorem 2.1. Let (X ,δq) be a bicomplete F-quasi Metric Space and J,K : X → X be two
mappings which satisfy
(2.1.1) J and K are commutative,
(2.1.2) J(X )⊂ K(X ), K(X ) is closed, ∀ x, y ∈ X ,
(2.1.3) φ(t)< t, for t > 0,
(2.1.4) δq(Jx, J y)≤φ(δq(K x,K y)), ∀ x, y ∈ X .
Then J and Khave a unique common fixed point.

Proof. Let x0 ∈ X . Then x1 ∈ X such that Jx0 = K x1. By continuing this process, we can define
the sequence {yn} in X such that

yn = Jxn = K xn+1, for n = 0,1,2, . . . .

Here J and Khave common coincidence point.
To prove the unique coincidence point, consider u1 and v1 are two distinct coincidence points of
J and K . Then ∃ u2,v2 such that

δ(u2,v2)> 0, Ju1 = Ku1 = u2, Jv1 = Kv1 = v2 .

From (2.1.4)

δq(u2,v2)= δq(Ju1, Jv1)≤φ(δq(Ku1,Kv1))=φ(δq(u2,v2))< δq(u2,v2).

This is a contradiction, thus J and K have a unique coincidence point.
Consider 0< δq(Jx0, Jx1)< ε, then

δq(Jxn, Jxn+1)≤φ(δq(K xn,K xn+1))
< δq(K xn,K xn+1)
= δq(Jxn−1, Jxn)
≤φ(δq(K xn−1,K xn))
< δq(K xn−1,K xn)
= δq(Jxn−2, Jxn−1)
...
= δq(Jx0, Jx1)< ε .
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Now, consider (m,n) ∈ N , m > n, therefore
m−1∑
i=n

δq(Jxi, Jxi+1)≤ (m−1−n)δq(Jx0, Jx1)< (m−1−n)ε< ε

Now, consider f (B) ∈ F × (0,∞), so that (δ2) is satisfied

(2.1.5) f

(
m−1∑
i=n

δq(Jxi, Jxi+1)

)
≤ f (ε)< f (ε)−B, ∀ n ∈ N

For m > n ≥ N , using (δ2) and (2.1.5)

δq(Jxn, Jxm)> 0⇒ δq(Jxn, Jxm)≤ f

(
m−1∑
i=n

δq(Jxi, Jxi+1)

)
≤ f (ε)

Hence δq(Jxn, Jxm)< ε
{yn}= {Jxn} is a right Cauchy sequence.

Similarly, consider the pair (xi+1, xi), then by above process, one can prove that {yn} is also left
Cauchy sequence and thus a Cauchy sequence.
Since (X ,δq) is bi-complete metric space, therefore {yn} is convergent to z ∈ X .
Now, {Jxn}= {K xn+1}⊂ K(X ).
Therefore, we have lim

n→∞δq(K xn,K z)= 0, because K is closed.
Now, to prove that J and K have z as coincidence point, assume that δq(Jz,K z)> 0.
Then

f (δq(Jz,K z))≤ f (δq(Jz, Jxn)+δq(Jxn,K z))+B

≤ f (φ(δq(K z,K xn))+δq(K xn+1,K z))+B .

As n →∞
lim

n→∞ f (φ(δq(K z,K xn))+δq(K xn+1,K z))+B →−∞ .

which is a contradiction, therefore δq(Jz,K z)= 0⇒ Jz = K z.
Therefore, z is coincidence point of J and K .
Therefore, J(z)= K(z)= w.
Now, K(w)= K(K(z))= J(F(z))= J(K(z))= J(w).
Hence w is another coincidence point of J and K , but J and K have unique coincidence point.
Therefore,

z = w .

Therefore,

J(z)= K(z)= z .

Therefore, J and K have a single fixed point in common.

Lemma 2.1 ([9]). Consider a F-quasi-metric space (X ,δq). Then, the following assertions hold:
(i) (X n,δq) is a F-quasi-metric space with

∆q((u1,u2, . . . ,un), (v1,v2, . . . ,vn))=max(δq(u1,v1),δq(u2,v2), . . . ,δq(un,vn))

for u1,u2, . . . ,un, v1,v2, . . . ,vn ∈ X .
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(ii) The mapping a : X n → X and b : X → X contain an n tuple common fixed point iff the
mapping A : X n → X n and B : X n → X n defined by

A(u1,u2, . . . ,un)= (a(u1,u2, . . . ,un),a(u2, . . . ,un,u1), . . . ,a(un,u1,u2, . . . ,un−1)),

B(u1,u2, . . . ,un)= (bu1,bu2, . . . ,bun),

possess a common fixed point in X n.
(iii) (X ,δq) is bi-complete iff (X n,∆q) is bi-complete.

Theorem 2.2. Let (X ,δq)be a bi-complete F-quasi metric space. Also, assume a : X n → X ,
b : X → X be two mappings which satisfy
(2.1.6) a(X n)⊂ b(X ), b(X ) is closed, ∀ x, y ∈ X

(2.1.7) δq(a(x1, x2, . . . , xn),a(y1, y2, . . . , yn))≤φ
{

1
n

(δq(bx1,by1)+δq(bx2,by2)+ . . .+δq(bxn,byn))
}

for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ X n.
(2.1.8) ∆q : X n × X n → [0,∞) be defined by (2.1.1) and (2.1.3) of Theorem 2.1).
Then a and b have a common n-tuple fixed point in X n.

Proof. Assume A : X n → X n by A(x1, x2, . . . , xn)= (a(x1, x2, . . . , xn),a(x2, . . . , xn, x1), . . . ,a(xn, x1, x2,
. . . , xn−1)).
Also assume, B : X n → X n defined by

B(x1, x2, . . . , xn)= (bx1,bx2, . . . ,bxn)

Using Lemma 2.1 (X n,∆q) is bi-complete F-quasi metric space.
Also, (x1, x2, . . . , xn) ∈ X n is a common n-tuple fixed point of a and b iff A and B have a common
fixed point.
Now,

∆q(A(x1, x2, . . . , xn), A(y1, y2, . . . , yn))=∆q(a(x1, x2, . . . , xn),a(x2, . . . , xn, x1), . . . ,a(xn, x1, x2, . . . , xn−1),

a(y1, y2, . . . , yn),a(y2, . . . , yn, y1), . . . ,a(yn, y1, y2, . . . , yn−1))

=max{δq(a(x1, x2, . . . , xn),a(y1, y2, . . . , yn)),

δq(a(x2, x3 . . . , xn, x1),a(y2, . . . , yn, y1)), . . . ,

δq(a(xn, x1, x2, . . . , xn−1),a(yn, y1, y2, . . . , yn−1))} .

Consider

∆q(A(x1, x2, . . . , xn), A(y1, y2, . . . , yn))= δq(a(x1, x2, . . . , xn),a(y1, y2, . . . , yn)

≤φ
{

1
n

(δq(bx1,by1)+δq(bx2,by2)+ . . .+δq(bxn,byn))
}

≤max
{
(δq(bx1,by1),δq(bx2,by2), . . . ,δq(bxn,byn))

}
=∆q(B(x1, x2, . . . , xn),B(y1, y2, . . . , yn))

or

∆q(A(x1, x2, . . . , xn), A(y1, y2, . . . , yn))= δq(a(x2, . . . , xn, x1),a(y2, . . . , yn, y1)

≤φ
{

1
n

(δq(bx2,by2)+ . . .+δq(bxn,byn)+δq(bx1,by1))
}
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≤ 1
n

(δq(bx2,by2)+ . . .+δq(bxn,byn)+δq(bx1,by1))

≤max{(δq(bx2,by2), . . . ,δq(bxn,byn),δq(bx1,by1))}

=∆q(B(x2, x3, . . . , xn, x1),B(y2, y3, . . . , yn, y1)) .

Proceeding in a similar way, one can prove

∆q(A(x1, x2, . . . , xn), A(y1, y2, . . . , yn))=∆q(B(x2, . . . , xn, x1),B(y2, . . . , yn, y1)) .

Thus by Lemma 2.1, a and b have a common n-tuple fixed point in X n.

Example 2.1. Let X = [0,1]. Define δq : X × X → [0,∞) by

δq(x, y)=
{

0, x = y,
|y|+ |x− y|, otherwise.

δq is bi-complete F-quasi metric with f (t)= ln t and B = 0.

Consider a : X n → X by a(x1, x2, . . . , xn)= x1 + x2 + . . .+ xn

n
.

Define b : X → X by b(x)= x
n .

Then a and b are commutative.
Also

δq(a(x1, x2, . . . , xn),a(y1, y2, . . . , yn)

= |a(y1, y2, . . . , yn)|+ |a(x1, x2, . . . , xn)−a(y1, y2, . . . , yn)|

= 1
n

[|y1 + y2 + . . .+ yn|+ |(x1 − y1)+ (x2 − y2)+ . . .+ (xn − yn)|]
= |by1 +by2 + . . .+byn|+ |(bx1 −by1)+ (bx2 −by2)+ . . .+ (bxn −byn)|
= ∣∣δq(bx1,by1)+δq(bx2,by2)+ . . .+δq(bxn,byn)

∣∣
≤φ

{
1
n

(δq(bx1,by1)+δq(bx2,by2)+ . . .+δq(bxn,byn))
}

.

All conditions of Theorem 2.2 are met, so a and bhave common n-tuple fixed point.

Corollary 2.1. Let (X ,δq)be a bi-complete F-quasi metric space. Consider J,K : X → X be two
arbitrary mappings which satisfy (2.1.1), (2.1.2), (2.1.3) and the condition below:
(2.1.9) δq(Jx, J y)≤ kδq(K x,K y), ∀ x, y ∈ X , k ∈ (0,1).
Then J and K have a unique common fixed point.

Proof. Consider φ(t)= kt in Theorem 2.1, we get the result.

Corollary 2.2. Let (X ,δq) be a bi-complete F-quasi metric space. Also, assume a : X n → X ,
b : X → X be two arbitrary mappings which satisfy (2.1.3), (2.1.6), (2.1.8) of Theorem 2.1 and

(2.1.10) δq(a(x1, x2, . . . , xn),a(y1, y2, . . . , yn))≤ k
n

{(δq(bx1,by1)+δq(bx2,by2)+ . . .+δq(bxn,byn))}.

Then a and b have an n-tuple fixed point in common.

Proof. Consider φ(t)= kt in Theorem 2.1, we get the result.

Remark 2.1. Corollary 2.1 and Corollary 2.2 are theorems proved by Ghasab et al. [9].
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Remark 2.2. If n = 4 in Theorem 2.2, we will get quadruple fixed point.

Remark 2.3. If n = 3 in Theorem 2.2, we will get tripled fixed point.

Remark 2.4. If n = 2 in Theorem 2.2, we will get coupled fixed point.

Remark 2.5. If n = 1 in Theorem 2.2, we will get fixed point.
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