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Dirac Operators with Generalized Coefficients

and Their Line Integration

S.V. Ludkowski

Abstract Dirac operators with generalized coefficients are studied. Their non-

commutative line integration over Cayley-Dickson algebras is investigated.

1. Introduction

In the previous article non-commutative line integration of Dirac operators

over octonions and Cayley-Dickson algebras was investigated [14]. This paper is

devoted to Dirac operators with generalized coefficients. Their non-commutative

line integration over Cayley-Dickson algebras is investigated. This is very

important, because many partial differential operators (PDO) can be decomposed

into compositions of Dirac operators with usual or more frequently with

generalized coefficients [15].

Recall that Dirac had used complexified quaternions to solve Klein-Gordon’s

hyperbolic differential equation with constant coefficients. The aim of this paper

consists of a development and an extension of Dirac’s approach on partial

differential equations with generalized coefficients.

The technique presented below can be used for solutions of partial differential

equations of the second order of arbitrary signatures and with variable coefficients.

Using iterated antiderivatives it is possible to write solutions of partial differential

equations (PDE). In this article notations and definitions of previous article [14]

are used.

2. Dirac Operators with Generalized Coefficients and PDE

1. Definition. Let X and Y be two R linear normed spaces which are also left

and right Ar modules, where 1 ≤ r . Let Y be complete relative to its norm.
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We put X⊗k := X ⊗R . . .⊗R X is the k times ordered tensor product over R of X .

By Lq,k(X
⊗k, Y ) we denote a family of all continuous k times R poly-linear and

Ar additive operators from X⊗k into Y . Then Lq,k(X
⊗k, Y ) is also a normed R

linear and left and right Ar module complete relative to its norm. In particular,

Lq,1(X , Y ) is denoted also by Lq(X , Y ) .

We present X as the direct sum X = X0 i0⊕ . . .⊕X2r−1i2r−1 , where X0, . . . , X2r−1

are pairwise isomorphic real normed spaces. If A ∈ Lq(X , Y ) and A(x b) = (Ax)b

or A(bx) = b(Ax) for each x ∈ X0 and b ∈ Ar , then an operator A we call right

or left Ar -linear respectively.

An R linear space of left (or right) k times Ar poly-linear operators is denoted

by Ll,k(X
⊗k, Y ) (or Lr,k(X

⊗k, Y ) respectively).

As usually a support of a function g : S → Ar on a topological space S is by

the definition supp(g) = cl{t ∈ S : g(t) 6= 0} , where the closure is taken in S .

We consider a space of test function D := D(Rn, Y ) consisting of all infinite

differentiable functions f : Rn → Y on Rn with compact supports. A sequence of

functions fn ∈ D tends to zero, if all fn are zero outside some compact subset

K in the Euclidean space Rn , while on it for each k = 0,1,2, . . . the sequence

{ f (k)
n

: n ∈ N} converges to zero uniformly. Here as usually f (k)(t) denotes

the k -th derivative of f , which is a k times R poly-linear symmetric operator

from (Rn)⊗k to Y , that is f (k)(t) · (h1, . . . ,hk) = f (k)(t) · (hσ(1), . . . ,hσ(k)) ∈ Y for

each h1, . . . ,hk ∈ Rn and every transposition σ : {1, . . . , k} → {1, . . . , k} , σ is an

element of the symmetric group Sk , t ∈ Rn . For convenience one puts f (0) = f .

In particular, f (k)(t) · (e j1
, . . . , e jk

) = ∂ k f (t)/∂ t j1
. . .∂ t jk

for all 1 ≤ j1, . . . , jk ≤ n ,

where e j = (0, . . . , 0, 1,0, . . . , 0) ∈ Rn with 1 on the j -th place.

Such convergence in D defines closed subsets in this space D , their

complements by the definition are open, that gives the topology on D . The space

D is R linear and right and left Ar module.

By a generalized function of class D ′ := [D(Rn, Y )]′ is called a continuous R-

linear Ar -additive function g : D →Ar . The set of all such functionals is denoted

by D ′ . That is, g is continuous, if for each sequence fn ∈ D , converging to zero, a

sequence of numbers g( fn) =: [g, fn) ∈Ar converges to zero for n tending to the

infinity.

A generalized function g is zero on an open subset V in Rn , if [g, f ) = 0 for

each f ∈ D equal to zero outside V . By a support of a generalized function g

is called the family, denoted by supp(g) , of all points t ∈ Rn such that in each

neighborhood of each point t ∈ supp(g) the functional g is different from zero.

The addition of generalized functions g,h is given by the formula:

[g + h, f ) := [g, f ) + [h, f ) .(1)
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The multiplication g ∈ D ′ on an infinite differentiable function w is given by the

equality:

[gw, f ) = [g, w f ) either for w : Rn→Ar and each test(2)

function f ∈ D with a real image f (Rn)⊂ R,

where R is embedded into Y ; or w : Rn→ R and f : Rn→ Y .

A generalized function g ′ prescribed by the equation:

[g ′, f ) :=−[g, f ′) is called a derivative g ′ of a generalized function g,(3)

where f ′ ∈ D(Rn, Lq(R
n, Y )), g ′ ∈ [D(Rn, Lq(R

n, Y ))]′.

Another space B :=B(Rn, Y ) of test functions consists of all infinite differentiable

functions f : Rn → Y such that the limit lim
|t |→+∞

|t|m f ( j)(t) = 0 exists for each

m = 0,1,2, . . . , j = 0,1,2, . . . . A sequence fn ∈ B is called converging to zero, if

the sequence |t|m f ( j)
n
(t) converges to zero uniformly on Rn \ B(Rn, 0,R) for each

m, j = 0,1,2, . . . and each 0 < R <+∞ , where B(Z , z,R) := {y ∈ Z : ρ(y, z) ≤ R}

denotes a ball with center at z of radius R in a metric space Z with a metric ρ .

The family of all R-linear and Ar -additive functionals on B is denoted by B ′ .

In particular we can take X =A α
r

, Y = A β
r

with 1 ≤ α , β ∈ Z . Analogously

spaces D(U , Y ) , [D(U , Y )]′ , B(U , Y ) and [B(U , Y )]′ are defined for domains

U in Rn . For definiteness we write B(U , Y ) = { f |U : f ∈ B(Rn, Y )} and

D(U , Y ) = { f |U : f ∈ D(Rn, Y )} .

A function g : U →Av is called locally integrable, if it is absolutely integrable

on each bounded λ measurable sub-domain V in U , i.e.
∫

V

|g(z)|λ(dz)<∞,

where λ denotes the Lebesgue measure on U .

A generalized function f is called regular if locally integrable functions

j,k f 1, l f 2 : U →Av exist such that

[ f ,ω) =

∫

U

�

∑

j,k,l

j,k f 1(z)kω(z) j f
2(z)

�

q(3)

λ(dz),

for each test function ω ∈ B(U , Y ) or ω ∈ D(U , Y ) correspondingly, where

ω = (1ω, . . . , βω) , kω(z) ∈ Av for each z ∈ U and all k , q(3) is a vector

indicating on an order of the multiplication in the curled brackets and it may

depend on the indices j, l = 1, . . . ,α , k = 1, . . . ,β .

We supply the space B(Rn, Y ) with the countable family of semi-norms

pα,k( f ) := sup
x∈Rn

|(1+ |x |)k∂ α f (x)|(4)

inducing its topology, where k = 0,1,2, . . . ; α = (α1, . . . ,αn) , 0 ≤ α j ∈ Z . On

this space we take the space B ′(Rn, Y )l of all Y valued continuous generalized
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functions (functionals) which are left Ar -linear of the form

f = f0i0 + . . .+ f2v−1 i2v−1 and g = g0i0 + . . .+ g2v−1 i2v−1,(5)

where f j and g j ∈ B
′(Rn, Y ) , with restrictions on B(Rn,R) being real- or

Ci = R⊕ iR- valued generalized functions f0, . . . , f2v−1 , g0, . . . , g2v−1 respectively.

Let φ = φ0i0 + . . .+φ2v−1i2v−1 with φ0, . . . ,φ2v−1 ∈ B(R
n,R) , then

[ f ,φ) =

2v−1
∑

k, j=0

[ f j ,φk)ik i j .(6)

Let their convolution be defined in accordance with the formula:

[ f ∗ g,φ) =

2v−1
∑

j,k=0

([ f j ∗ gk,φ)i j)ik for each φ ∈B(Rn, Y ).(7)

Particularly,

[ f ∗ g)(x) = f (x − y) ∗ g(y) = f (y) ∗ g(x − y) for all x , y ∈ Rndue to (7),(8)

since the latter equality is satisfied for each pair f j and gk .

2. Partial Differential Operators with Generalized Coefficients. Let an operator

Q be given by Formula

Q f (z) =
∑

j,k

[(∂ f (z)/∂ z j)(∂ φ
1
j
(z)∗/∂ zk)]φ

∗
k
(z)(α)

+
∑

j

[(∂ f (z)/∂ z j)φ
1
j
(z)∗]β(z) +
∑

k

[ f (z)(∂ β1(z)/∂ zk)]φ
∗
k
(z)

on a domain U . Initially it is considered as a domain in the Cayley-Dickson algebra

Av . But in the case when Q and f depend on smaller number of real coordinates

z0, . . . , zn−1 we can take the real shadow of U and its sub-domain V of variables

(z0, . . . , zn−1) , where zk are marked for example being zero for all n≤ k ≤ 2v − 1.

Thus we take a domain V which is a canonical closed subset in the Euclidean space

Rn , 2v−1 ≤ n≤ 2v − 1, v ≥ 2.

A canonical closed subset P of the Euclidean space X = Rn is called a quadrant

if it can be given by the condition P := {x ∈ X : q j(x)≥ 0} , where (q j : j ∈ ΛP) are

linearly independent elements of the topologically adjoint space X ∗ . Here ΛP ⊂ N

(with card(ΛP) = k ≤ n) and k is called the index of P . If x ∈ P and exactly j of

the qi ’s satisfy qi(x) = 0 then x is called a corner of index j .

That is P is affine diffeomorphic with Pn =
∏n

j=1
[a j , b j] , where −∞ ≤

a j < b j ≤ ∞ , [a j , b j] := {x ∈ R : a j ≤ x ≤ b j} denotes the segment in R .

This means that there exists a vector p ∈ Rn and a linear invertible mapping

C on Rn so that C(P) − p = Pn . We put t j,1 := (t1, . . . , t j , . . . , tn : t j = a j) ,

t j,2 := (t1, . . . , t j, . . . , tn : t j = b j) . Consider t = (t1, . . . , tn) ∈ Pn .

This permits to define a manifold M with corners. It is a metric separable space

modelled on X = Rn and is supposed to be of class C s , 1 ≤ s . Charts on M are
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denoted (Ul ,ul , Pl ) , that is, ul : Ul → ul(Ul) ⊂ Pl is a C s -diffeomorphism for

each l , Ul is open in M , ul ◦ u j
−1 is of C s class of smoothness from the domain

u j(Ul ∩ U j) 6= ; onto ul(Ul ∩ U j) , that is, u j ◦ u−1
l

and ul ◦ u−1
j

are bijective,
⋃

j U j = M .

A point x ∈ M is called a corner of index j if there exists a chart (U ,u, P) of

M with x ∈ U and u(x) is of index indM (x) = j in u(U) ⊂ P . A set of all corners

of index j ≥ 1 is called a border ∂M of M , x is called an inner point of M if

indM(x) = 0, so ∂M =
⋃

j≥1 ∂
j M , where ∂ j M := {x ∈ M : indM (x) = j} (see

also [16]). We consider that

(D1) V is a canonical closed subset in the Euclidean space Rn , that is V =

cl(Int(V )) , where Int(V ) denotes the interior of V and cl(V ) denotes the closure

of V .

Particularly, the entire space Rn may also be taken.

Let a manifold W be satisfying the following conditions (i− v) .

(i) The manifold W is continuous and piecewise Cα , where C l denotes the family

of l times continuously differentiable functions. This means by the definition that

W as the manifold is of class C0 ∩ Cα
loc

. That is W is of class Cα on open subsets

W0, j in W and W \
�
⋃

j W0, j

�

has a codimension not less than one in W .

(ii) W =
⋃m

j=0
Wj , where W0 =

⋃

k W0,k , Wj∩Wk = ; for each k 6= j , m= dimR W ,

dimR Wj = m− j , Wj+1 ⊂ ∂Wj .

(iii) Each Wj with j = 0, . . . , m − 1 is an oriented Cα -manifold, Wj is open

in
⋃m

k= j
Wk . An orientation of Wj+1 is consistent with that of ∂Wj for each

j = 0,1, . . . , m− 2. For j > 0 the set Wj is allowed to be void or non-void.

(iv) A sequence W k of Cα orientable manifolds embedded into Rn , α ≥ 1, exists

such that W k uniformly converges to W on each compact subset in Rn relative to

the metric dist .

For two subsets B and E in a metric space X with a metric ρ we put

dist(B, E) :=max
n

sup
b∈B

dist({b}, E), sup
e∈E

dist(B, {e})
o

,(1)

where dist({b}, E) := inf
e∈E
ρ(b, e) , dist(B, {e}) := inf

b∈B
ρ(b, e) , b ∈ B , e ∈ E .

Generally, dimR W = m ≤ n . Let (ek
1
(x), . . . , ek

m
(x)) be a basis in the tangent

space Tx W k at x ∈W k consistent with the orientation of W k , k ∈ N .

We suppose that the sequence of orientation frames (ek
1
(xk), . . . , ek

m
(xk)) of W k

at xk converges to (e1(x), . . . , em(x)) for each x ∈ W0 , where lim
k

xk = x ∈ W0 ,

while e1(x) ,. . . ,em(x) are linearly independent vectors in Rn .
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(v) Let a sequence of Riemann volume elements λk on W k (see §XIII.2 [17])

induce a limit volume element λ on W , that is, λ(B∩W ) = lim
k→∞
(B∩W k) for each

compact canonical closed subset B in Rn , consequently, λ(W \W0) = 0.

(vi) We shall consider surface integrals of the second kind, i.e. by the oriented

surface W (see (iv)), where each Wj , j = 0, . . . , m−1 is oriented (see also §XIII.2.5

[17]).

Suppose that a boundary ∂ U of U satisfies Conditions (i − v) and

(vii) Let the orientations of ∂ Uk and Uk be consistent for each k ∈ N (see

Proposition 2 and Definition 3 [17]).

Particularly, the Riemann volume element λk on ∂ Uk is consistent with the

Lebesgue measure on Uk induced from Rn for each k . This induces the measure

λ on ∂ U as in (v) . This consideration certainly encompasses the case of a domain

U with a Cα boundary ∂ U as well.

Suppose that U1 ,. . . ,Ul are domains in Rn satisfying conditions (D1, i − vii)

and such that U j ∩ Uk = ∂ U j ∩ ∂ Uk for each j 6= k , U =
⋃l

j=1
U j . Consider a

function g : U → Av such that each its restriction g|U j
is of class C s , but g

on the entire domain U may be discontinuous or not Ck , where 0 ≤ k ≤ s ,

1 ≤ s . If x ∈ ∂ U j ∩ ∂ Uk for some j 6= k , x ∈ Int(U) , such that x is of index

m ≥ 1 in U j (and in Uk also). Then there exist canonical Cα local coordinates

(y1, . . . , yn) in a neighborhood Vx of x in U such that S := Vx ∩ ∂
mU j =

{y : y ∈ Vx ; y1 = 0, . . . , ym = 0} . Using locally finite coverings of the locally

compact topological space ∂ U j∩∂ Uk without loss of generality we suppose that Cα

functions P1(z), . . . , Pm(z) on Rn exist with S = {z : z ∈ Rn; P1(z) = 0, . . . , Pm(z) =

0} . Therefore, on the surface S the delta-function δ(P1, . . . , Pm) exists, for m = 1

denoting them P = P1 and δ(P) respectively (see §III.1 [4]). It is possible

to choose y j = Pj for j = 1, . . . , m . Using generalized functions with definite

supports, for example compact supports, it is possible without loss of generality

consider that y1, . . . , yn ∈ R are real variables. Let θ(Pj) be the characteristic

function of the domain P j := {z : Pj(z)≥ 0} , θ(Pj) := 1 for Pj ≥ 0 and θ(Pj) = 0

for Pj < 0. Then the generalized function θ(P1, . . . , Pm) := θ(P1) . . .θ(Pm) can

be considered as the direct product of generalized functions θ(y1) ,. . . ,θ(ym) ,

1(ym+1, . . . , yn) ≡ 1, since variables y1, . . . , yn are independent. Then in the class

of generalized functions the following formulas are valid:

∂ θ(Pj)/∂ zk = δ(Pj)(∂ Pj/∂ zk) for each k = 1, . . . , n,(2)

consequently,

grad[θ(P1, . . . , Pm)] =

m
∑

j=1

[θ(P1) . . .θ(Pj−1)δ(Pj)(grad(Pj))θ(Pj+1) . . .θ(Pm)],(3)
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where, grad g(z) := (∂ g(z)/∂ z1, . . . ,∂ g(z)/∂ zn) (see Formulas III.1.3(1,7,7 ′ ,9)

and III.1.9(6) [4]).

Let for the domain U in the Euclidean space Rn the set of internal surfaces

clU[IntRn(U) ∩
⋃

j 6=k(∂ U j ∩ ∂ Uk)] in U on which a function g : U → Av or its

derivatives may be discontinuous is presented as the disjoint union of surfaces Γ j ,

where each surface Γ j is the boundary of the sub-domain

P j := {Pj,1(z)≥ 0, . . . , Pj,m j
(z) ≥ 0}, Γ j = ∂P j =

m j
⋃

k=1

∂ kP j ,(4)

m j ∈ N for each j , clX (V ) denotes the closure of a subset V in a topological space

X , IntX (V ) denotes the interior of V in X . By its construction the family {P j : j}

is the covering of U which is the refinement of the covering {Uk : k} , i.e. for each

P j a number k exists so that P j ⊂ Uk and ∂P j ⊂ ∂ Uk and
⋃

jP
j =
⋃

k Uk = U .

We put

h j(z(x)) = h(x)|x∈Γ j := lim
y j,1↓0,...,y j,n↓0

g(z(x + y))− lim
y j,1↓0,...,y j,n↓0

g(z(x − y))(5)

in accordance with the supposition made above that g can have only discontinuous

of the first kind, i.e. the latter two limits exist on each Γ j , where x and y are

written in coordinates in P j , z = z(x) denotes the same point in the global

coordinates z of the Euclidean space Rn . We take new continuous function

g1(z) = g(z)−
∑

j

h j(z)θ(Pj,1(z), . . . , Pj,m j
(z)).(6)

Let the partial derivatives and the gradient of the function g1 be calculated

piecewise one each Uk . Since g1 is the continuous function, it is the regular

generalized function by the definition, consequently, its partial derivatives exist

as the generalized functions. If g1|U j
∈ C1(U j ,Av) , then ∂ g1(z)/∂ zk is the

continuous function on U j , i.e. in this case ∂ g1(z)χU j
(z)/∂ zk is the regular

generalized function on U j for each k , where χG(z) denotes the characteristic

function of a subset G in Av , χG(z) = 1 for each z ∈ G , while χG(z) = 0 for

z ∈Av \ G . Therefore, g1(z) =
∑

j g1(z)χU j\
⋃

k< j Uk
(z) , where U0 = ; , j, k ∈ N .

On the other hand, the function g(z) is locally continuous on U , consequently,

it defines the regular generalized function on the space D(U ,Av) of test

functions as

[g,ω) :=

∫

U

ω(z)g(z)λ(dz),

where λ is the Lebesgue measure on U induced by the Lebesgue measure on the

real shadow R2v

of the Cayley-Dickson algebra Av , ω ∈ D(U ,Av) . Thus partial

derivatives of g exist as generalized functions.
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In accordance with formulas (2, 3, 6) we infer that the gradient of the function

g(z) on the domain U is the following:

grad g(z) = grad g1(z) +
∑

j

h j(z)gradθ(Pj,1, . . . , Pj,m j
).(7)

Thus formulas (3, 7) permit calculations of coefficients of the partial differential

operator Q given by formula 2(α) .

3. Line Generalized Functions. Let U be a domain satisfying Conditions [14]

1(D1, D2) and 2(D1,i-vii). We embed the Euclidean space Rn into the Cayley-

Dickson algebra Av , 2v−1 ≤ n ≤ 2v − 1, as the R affine sub-space putting

Rn ∋ x = (x1, . . . , xn) 7→ x1i j1
+ . . . + xn i jn

+ x0 ∈ Av , where jk 6= jl for each

k 6= l , x0 is a marked Cayley-Dickson number, for example, jk = k for each k ,

x0 = 0. Moreover, each z j can be written in the z -representation in accordance

with Formulas [14] 1(1-3).

We denote by P = P(U) the family of all rectifiable paths γ : [aγ, bγ] → U

supplied with the metric

ρ(γ,ω) := |γ(a)−ω(aω)|+ inf
φ

V b
a
(γ(t)−ω(φ(t))(1)

where the infimum is taken by all diffeomorphisms φ : [aγ, bγ]→ [aω, bω] so that

φ(aγ) = aω , a = aγ < bγ = b (see [14] §3).

Let us introduce a continuous mapping g :B(U ,Av)× P(U)×V (U ,Av)→ Y

such that its values are denoted by [g;ω,γ;ν] , where Y is a module over the

Cayley-Dickson algebra Av , ω ∈ B(U ,Av) , γ ∈ P(U) , V (U ,Av) denotes the

family of all functions on U with values in the Cayley-Dickson algebra of bounded

variation (see [14] §3), ν ∈ V (U ,Av) . For the identity mapping ν(z) = id(z) = z

values of this functional will be denoted shortly by [g;ω,γ] . Suppose that this

mapping g satisfies the following properties (G1-G5):

(G1) [g;ω,γ;ν] is bi- R homogeneous and Av additive by a test function ω

and by a function of bounded variation ν ;

(G2) [g;ω,γ;ν] = [g;ω,γ1;ν] + [g;ω,γ2;ν] for each γ,γ1 and γ2 ∈ P(U)

such that γ(t) = γ1(t) for all t ∈ [aγ1 , bγ1] and γ(t) = γ2(t) for any t ∈ [aγ2 , bγ2]

and aγ1 = aγ and aγ2 = bγ1 and bγ = bγ2 .

(G3) If a rectifiable curve γ does not intersect a support of a test function ω

or a function of bounded variation ν , γ([a, b] ∩ (supp(ω) ∩ supp(ν)) = ; , then

[g;ω,γ;ν] = 0, where supp(ω) := cl{z ∈ U :ω(z) 6= 0} .

Further we put

(G4) [∂ |m|g(z)/∂ z
m0

0 . . .∂ z
m2v−1

2v−1 ;ω,γ] := (−1)|m|[g;∂ |m|ω(z)/∂ z
m0

0 . . .∂ z
m2v−1

2v−1 ,γ]

for each m = (m0, . . . , m2v−1) , m j is a non-negative integer 0 ≤ m j ∈ Z for each
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j , |m| := m0 + . . .+m2v−1 . In the case of a super-differentiable function ω and a

generalized function g we also put

(G5) [(dk g(z)/dzk).(h1, . . . ,hk);ω,γ] := (−1)k[g; (dkω(z)/dzk).(h1, . . . ,hk),γ]

for any natural number k ∈ N and Cayley-Dickson numbers h1, . . . ,hk ∈Av .

Then g is called the Y valued line generalized function on B(U ,Av)×P(U)×

V (U ,Av) . Analogously it can be defined on D(U ,Av)× P(U)× V (U ,Av) (see

also §1). If Y = Av we call it simply the line generalized function, while for

Y = Lq(A
k
v

,A l
v
) we call it the line generalized operator valued function, k, l ≥ 1,

omitting “on B(U ,Av)×P(U)×V (U ,Av)” or “line” for short, when it is specified.

Their spaces we denote by Lq(B(U ,Av)× P(U)× V (U ,Av); Y ) . Thus if g is a

generalized function, then Formula (G5) defines the operator valued generalized

function dk g(z)/dzk with k ∈ N and l = 1.

If g is a continuous function on U (see §3), then the formula

(G6) [g;ω,γ;ν] =
∫

γ
ω(y)g(y)dν(y)

defines the generalized function.If f̂ (z) is a continuous Lq(Av ,Av) valued

function on U , then it defines the generalized operator valued function with

Y = Lq(Av ,Av) such that

(G7) [ f̂ ;ω,γ;ν] =
∫

γ
{ f̂ (z).ω(z)}dν(z) .

Particularly, for ν = id we certainly have dν(z) = dz .

We consider on Lq(B(U ,Av)× P(U)×V (U ,Av); Y ) the strong topology:

(G8) lim
l

f l = f means that for each marked test function ω ∈ B(U ,Av) and

rectifiable path γ ∈ P(U) and function of bounded variation ν ∈ V (U ,Av) the

limit relative to the norm in Y exists

lim
l
[ f l ;ω,γ;ν] = [ f ;ω,γ;ν].

4. Line Integration of Generalized Functions. Let Cm
ab
(V,Av) denote the R

linear space and right and left Av module of all functions γ : V → Av such

that γ(z) and each its derivative ∂ |k|g(z)/∂ z
m1

1 . . .∂ zmn
n

for 1 ≤ |k| ≤ m is

absolutely continuous on V (see §§3 [14] and 3 above). This definition means that

Cm+1(V,Av) ⊂ Cm
ab
(V,Av) , where Cm(V,Av) denotes the family of all m times

continuously differentiable functions on a domain V either open or canonical

closed in Rn , which may be a a real shadow of U as well.

5. Lemma. Let γ ∈ Cm
ab
([a, b],Av)∩P(U) and ω ∈ B(U ,Av) and ν ∈ C0

ab
(U ,Av)

for m = 0 or ν = id for m ≥ 1 , where 0 ≤ m ∈ Z , then a line generalized function

[g;ω,γ|[a,x];ν] is continuous for m = 0 or of class Cm by the parameter x ∈ [a, b]

for m≥ 1 .
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Proof. For absolutely continuous functions γ(t) and ν (i.e. when m = 0) the

continuity by the parameter x follows from the definition of the line generalized

function, since

lim
∆x→0

ρ(γ|[a,x],γ|[a,x+∆x]) = 0 and lim
∆x→0

ρ(ν ◦ γ|[a,x],ν ◦ γ|[a,x+∆x]) = 0 .

Consider now the case m ≥ 1 and ν = id . In view of properties 3(G1, G2) for any

∆x 6= 0 so that x ∈ (a, b] := {t ∈ R : a < t ≤ b} and x +∆x ∈ (a, b) := {t ∈ R :

a < t < b} the difference quotient satisfies the equalities:

{[g;ω,γ|[a,x+∆x]]− [g;ω,γ|[a,x]]}/∆x(1)

= [g;ω/∆x ,γ ◦φ|[a,x]]− [g;ω/∆x ,γ|[a,x]],

where φ : [a, x] → [a, x +∆x] is a diffeomorphism of [a, x] onto [a, x +∆x]

with φ(a) = a . Therefore, ∆ω := ω(z +∆z)−ω(z) for z = γ(t) and z +∆z =

γ(φ(t)) , t ∈ [a, x] in the considered case. Using Conditions (G1, G3) one can

mention that if ω =ω1 on an open neighborhood V of γ in U , then

[g;ω,γ] = [g;ω1,γ],(2)

since ω−ω1 = 0 on V and γ∩ supp(ω−ω1) = 0.

From Conditions 3(G1, G4) and formula (2) we deduce that

lim
∆x→0
{[g;ω,γ|[a,x+∆x]]− [g;ω,γ|[a,x]]}/∆x(3)

=

2v−1
∑

j=0

[g; (∂ω(z)/∂ z j), (dγ j(t)/d t)γ|[a,x]],

where z j
′ = dγ j(t)/d t for z = γ(t) , t ∈ [a, b] , since each partial derivative

of the test function ω is again the test function. From the first part of the

proof we get that [g;ω,γ|[a,x]] is of class C1 by the parameter x , since the

product (dγ j(t)/d t)γ(t) of absolutely continuous functions (dγ j(t)/d t) and γ(t)

is absolutely continuous for each j . Repeating this proof by induction for k =

1, . . . , m one gets the statement of this lemma for γ ∈ Cm
ab
([a, b],Av)∩ P(U) . �

6. Lemma. If γ is a rectifiable path, then a line generalized function [g;ω,γ|[a,x]]

is of bounded variation by the parameter x ∈ [a, b] .

Proof. Let γ ∈ P(U) be a rectifiable path in U , γ : [a, b]→ U . We can present γ

in the form

γ(t) =

2v−1
∑

j=0

γ j(t)i j ,(1)

where each function γ j(t) is real-valued. Therefore, γ j(t) is continuous and of

bounded variation for each j , since γ is such. Thus the function ω(γ(t)) is of

bounded variation V b
a
ω(γ)<∞ , since ω is infinite differentiable and γ([a, b]) is

compact.
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On the other hand, each function f : [a, b] → R of bounded variation can be

written as the difference f = f 1 − f 2 of two monotone non-decreasing functions

f 1 and f 2 of bounded variations: f 1(t) := V t
a

f and f 2(t) = f 1(t) − f (t) for

each t ∈ [a, b] (see [9]). This means that f k = gk + hk , where a function gk

is continuous monotone and of bounded variation, while hk is a monotone step

function, where k = 1,2. When the function f is continuous one gets f = g1− g2 .

For a monotone non-decreasing function p one has V t
a

p = p(t)− p(a) .

In view of Property 3(G1) we infer that

[g;ω,γ|[a,x]] =

2v−1
∑

j=0

[g j;ω,γ|[a,x]]i j ,(2)

where the function [g j;ω,γ|[a,x]] by x is real-valued for any ω ∈ B(U ,Av) and

γ ∈ P(U) for all j = 0, . . . , 2v − 1.

The metric space P(Ū) is complete, where Ū = cl(U) . Indeed, let gn be a

sequence of rectifiable paths in Ū fundamental relative to the metric ρ given by

Formula 3(1). Using diffeomorphism preserving orientations of segments we can

consider without loss of generality that each path gn is defined on the unit segment

[0,1] , a = 0, b = 1. It is lightly to mention that

|g(a)− f (a))|+ V b
a
(g − f )≥ sup

t∈[a,b]

|g(t)− f (t)|(3)

for any two functions of bounded variation, f , g : [a, b] → Ū . For each ε > 0 a

natural number n0 = n0(ε) exists so that ρ(gn, gm) < ε/2 for all n, m ≥ n0 . That

is φn : [0,1]→ [0,1] diffeomorphisms exist such that

|gn(a)− gm(a))|+ V b
a
(gn ◦φn − gm ◦φm) < ε for all n, m ≥ n0,

since φm ◦ (φn)−1 is also the diffeomorphism preserving the orientation of the

segment. Using induction by ε = 1/l with l ∈ N one chooses a sequence of

diffeomorphisms φn such that for each l ∈ N a natural number n0 = n0(l) exists

such that

|gn(a)− gm(a))|+ V b
a
(gn ◦φn − gm ◦φm) < 1/l for all n, m ≥ n0(l),

consequently,

sup
t∈[a,b]

|gn(φn(t))− gm(φm(t))|< 1/l for all n, m ≥ n0(l).

Thus the sequence gn◦φn is fundamental in C0([a, b], Ū) . The latter metric space

is complete relative to the metric

d( f , g) := sup
t∈[a,b]

| f (t)− g(t)|,

since from the completeness of the Cayley-Dickson algebra Av considered as the

normed space over the real field the completeness of the closed subset Ū follows

(see also Chapter 8 in [3]). Therefore, the sequence gn ◦ φn converges to a
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continuous function f : [a, b]→ Ū . On the other hand, lim
m→∞

ρ(gn◦φn, gm◦φm) =

ρ(gn ◦ φn, f ) ≤ 1/l for each n > n0(l) , l ∈ N . The function gn ◦ φn is of

bounded variation, consequently, the function f is also of bounded variation. That

is f ∈ P(Ū) . Thus P(Ū) is complete. �

Take any sequence γn of C2
ab
([a, b],Av) paths in U converging to γ relative

to the metric ρ on P(Ū) and the latter metric space is complete as it was

demonstrated above. In view of formula 5(3) and Property 3(G3) the sequence

[g;ω,γn|[a,x]] is fundamental in P(Ū) . On the other hand, the generalized

function g is continuous on B(U ,Ar) × P(Ū) , consequently, the sequence

[g;ω,γn|[a,x]] converges in B(U ,Ar)×P(Ū) to [g;ω,γ|[a,x]] for each a < x ≤ b ,

hence [g;ω,γ|[a,x]] = lim
n
[g;ω,γn|[a,x]] in P(Ū) . By the conditions of this lemma

[g;ω,γ|[a,x]] ∈ P(U) , since γ([a, b]) ⊂ U . Thus the function [g;ω,γ|[a,x]] by

x ∈ [a, b] is of bounded variation:

V b
a
[g;ω,γ|[a,x]]<∞ .

7. Definition. Let f and η be two line generalized functions on B(U ,Av) ×

P(U)×V (U ,Av) . We define a line functional with values denoted by

[

∫

γ

f dη,ω1⊗ω) := [ f̂ ;ω1,γ;[η;ω,κ]]|κ=γ

= [ f̂ ;ω1,∗;[η;ω,∗]](γ),

where γ ∈ P(U) is a rectifiable path in U , ω,ω1 ∈ B(U ,Av) are any test

functions. The functional
∫

γ
f dη is called the non-commutative line integral

over the Cayley-Dickson algebra Av of line generalized functions f by η . Quite

analogously such integral is defined for line generalized functions f and η on

D(U ,Av)× P(U)×V (U ,Av) .

8. Theorem. Let F and Ξ be two generalized functions on U , F,Ξ ∈ B ′(U ,Av)

or F,Ξ ∈ D ′(U ,Av) , then the the non-commutative line integral over the Cayley-

Dickson algebra Av of line generalized functions f by ξ exists, where f is induced

by F and ξ by Ξ .

Proof. At first it is easy to mention that Definition 7 is justified by Definition 3 and

Lemma 6, since the function [η;ω,κ|[a,x]] is of bounded variation by the variable

x for each rectifiable path κ ∈ P(U) and any test function ω (see Properties 3(G1-

G3)), while the operator f̂ always exists in the class of generalized line operators,

f̂ = d g/dz , (d g(z)/dz).1= f (z) (see Property 3(G5)).

Each generalized function f ∈ B(U ,Av) can be written in the form:

[ f ,ω) =

2v−1
∑

j,k=0

[ f j,k,ωk)i j ,(1)
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where each f j,k is a real valued generalized function, f j,k ∈ B
′(U ,R) , ω =

∑

kωk ik , ωk ∈ B(U ,R) is a real valued test function, [ f j,k,ωk) = [ f j ,ωk ik) ,

[ f ,ω) =
∑

j[ f j ,ω)i j , [ f j,ω) ∈ R for each j = 0, . . . , 2v − 1 and ω ∈ B(U ,Av) ,

i0, . . . , i2v−1 is the standard base of generators of the Cayley-Dickson algebra

Av . It is well-known that in the space B ′(U ,R) of generalized functions

the space B(U ,R) of test functions is everywhere dense (see [4] and §1

above). Each functional f j,k induces a left Av -linear functional and hence using

Properties 3(G1, G7) it remains to consider the case, when F and Ξ are left Av -

linear. In view of the decomposition given by Formula (1) we get that B(U ,Av)

is everywhere dense in B ′(U ,Av)l . Thus sequences of test functions F l and Ξl

exist converging to F and Ξ correspondingly in B ′(U ,Av)l .

Without loss of generality we can embed U into Av taking its ε -enlargement

(open neighborhood) in case of necessity. So it is sufficient to treat the case of

a domain U in Av . In view of the analog of the Stone-Weierstrass theorem

(see [11, 12]) in C0(Q,Av) for each compact canonical closed subset in Av

the family of all super-differentiable on Q functions is dense, consequently, the

space H (U ,Av) of all super-differentiable functions on U is everywhere dense in

D(U ,Av) . For each rectifiable path γ in the domain U a compact canonical closed

domain Q exists Q ⊂ U so that γ([a, b])⊂Q . Therefore, it is sufficient to consider

test functions with compact supports in Q . Thus we take super-differentiable

functions F n and Ξn .

Let γl be a sequence of rectifiable paths continuously differentiable, γl ∈

C1([a, b],Av) , converging to γ in P(U) relative to the metric ρ .

Then for any super-differentiable functions p and q we have

∫

γl

p(z)dq(z) =

∫ b

a

(dζ(z)/dz) · [(dq(z)/dz) · dγl(t)]|z=γl(t)(2)

=

∫ b

a

2v−1
∑

k=0

(∂ ζ(z)/∂ zk)[

2v−1
∑

j=0

(∂ qk(z)/∂ z j)dγ
l
j
(t)],

since each super-differentiable function is Fréchet differentiable, dγl
j
(t) =

γl
j

′
(t)d t , where (dζ(z)/dz) · 1 = p(z) and for the corresponding phrases of them

for each z ∈ U . On the other hand, the functional
∫ b

a

2v−1
∑

k=0

(∂ ζ(z)/∂ zk)

� 2v−1
∑

j=0

(∂ qk(z)/∂ z j)dγ
l
j
(t)

�

(3)

is continuous on B(U ,Av)
2 × P(U) , i.e. for ζ,q ∈ B(U ,Av) and γ ∈ P(U) as

well.

For a rectifiable path γ in U it is possible to take a sequence of open ε

neighborhoods Γε :=
⋃

z∈γ([a,b]) B̆(Av , z,ε) , ε = ε(l) = 1/l , where B̆(Av , z,ε) :=

{y : y ∈ Av; |y − z|< ε} . Therefore, for each function ν of bounded variation on
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U and each rectifiable path γ in U a sequence of test functions θ l with supports

contained in Γ1/l exists such that

lim
l

∫

U

[(dζ(z)/dz) · θ l (z)]λ(dz) =

∫

γ

p(z)dν(z)

for each super-differentiable test functions p,ζ ∈H (U ,Av) with (dζ(z)/dz) ·1=

p(z) on U , where λ denotes the Lebesgue measure on U induced by the Lebesgue

measure on the real shadow R2v

of the Cayley-Dickson algebra Av , where

H (U ,Av) denotes the family of all super-differentiable functions on the domain

U with values in the Cayley-Dickson algebra Av .

Using the latter property and in accordance with Formulas (1-3) and 3(G6, G7)

we put:

[ξ;ω,γ] := lim
l
[Ξl ;ω,γ] = lim

l

∫

γ

ω(y)Ξl(y)d y(4)

and

[ f̂ ;ω1,γ;ν] = lim
l
[dG l/dz;ω1,γ;ν] = lim

l

∫

γ

{(dG l(z)/dz).ω1(z)}dν(z)(5)

for any ν ∈ V (U ,Av) , where (dG l/dz) · 1= F l(z) on U .

Therefore Ξl converges to ξ and dG l/dz converges to f̂ , where

[ξ;ω,∗](κ|[a,x]) = [ξ;ω,κ|[a,x]] for each κ ∈ P(U) , a < x ≤ b (see Lemma 6).

Therefore, from Formulas (2-5) and Lemmas 5 and 6 we infer that

[

∫

γ

f dξ,ω1⊗ω) = lim
l
[dG l/dz;ω1,∗;[Ξl ;ω,∗]](γl)(6)

= lim
l

∫

γl

[dG l/dz;ω1,∗; d[Ξl ;ω,∗](z)],

where z = γl(t) , a ≤ t ≤ b .

9. Corollary. If F : U →Av is a continuous function on U and Ξ is a generalized

function on U , then the non-commutative line integral over the Cayley-Dickson

algebra Av of line generalized functions f by ξ

[

∫

γ

f dξ,ω1⊗ω)(1)

exists, where f is induced by F and ξ by Ξ .

Proof. This follows from Theorem 8 and the fact that each continuous function F

on U gives the corresponding regular line operator valued generalized function on

the space of test functions ω1 in B(U ,Av) or D(U ,Av) :

[F̂ ;ω1,γ] =

∫

γ

(F̂(z).ω1(z))dz .
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In this case one can take the marked function ω1 = χV , where V is a compact

canonical closed sub-domain in U , since γ([a, b]) is compact for each rectifiable

path γ in U so that γ([a, b]) ⊂ V for the corresponding compact sub-domain V .

This gives F̂ .χV (z) = F(z) for each z ∈ V and F̂ .χV (z) = 0 for each z ∈ U \V . �

10. Corollary. If F ∈ B ′(U ,Av) or F ∈ D ′(U ,Av) is a generalized function on

U and Ξ is a function of bounded variation on U , then the non-commutative line

integral over the Cayley-Dickson algebra Av of line generalized functions f by ξ

[

∫

γ

f dξ,ω1⊗ω)

exists, where f is induced by F and ξ by Ξ .

Proof. In this case we put

[ξ;ω,κ] :=

∫

κ

ω(z)dΞ(z)

for each test function ω and each rectifiable path κ in U . It is sufficient to take

marked test function ω(z) = 1 for each z ∈ U that gives d[ξ; 1,∗] = dΞ . Thus

this corollary follows from Theorem 8. �

11. Corollary. If F is a continuous function on U and Ξ is a function of bounded

variation on U , then the non-commutative line integral over the Cayley-Dickson

algebra Av of line generalized functions f by ξ .

[

∫

γ

f dξ,ω1⊗ω)(1)

exists, where f is induced by F and ξ by Ξ . Moreover, this integral coincides

with the non-commutative line integral from [14] §3 for the unit test functions

ω(z) =ω1(z) = 1 for each z ∈ U :

[

∫

γ

f dξ, 1⊗ 1) =

∫

γ

f dξ .(2)

Proof. This follows from the combination of two preceding corollaries, since for a

rectifiable path γ its image in U is contained in a compact sub-domain V in U ,

i.e. γ([a, b])⊂ V . �

12. Convolution Formula for Solutions of Partial Differential Equations. Using

convolutions of generalized functions a solution of the equation

(C1) (Υs + β) f = g in B(Rn, Y ) or in the space B ′(Rn, Y )l is:

(C2) f = EΥs+β ∗ g ,

where EΥs+β denotes a fundamental solution of the equation

(C3) (Υs + β)EΥ+β = δ ,

(δ,φ) = φ(0) (see §9). The fundamental solution of the equation
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(C4) A0V = δ with A0 = (Υ
s +β)(Υ

s1

1 +β1)

can be written as the convolution

(C5) V =: VA0
= EΥs+β ∗ EΥs1

1 +β1
.

In view of Formulas [14] 4(7-9) each generalized function EΥs+β can also be

found from the elliptic partial differential equation

(C6) ΞβΨΥs+β = δ by the formula:

(C7) EΥs+β = [(Υ
s +β)∗]ΨΥs+β ,

where

(C8) Ξβ := (Υs + β)(Υs+ β)∗

(see §33 [15]).

13. Poly-functionals. Let ak : B(U ,Ar)
k → Ar or ak : D(U ,Ar)

k → Ar be a

continuous mapping satisfying the following three conditions:

(P1) [ak,ω1 ⊗ . . .⊗ωk) is R homogeneous

[ak,ω1 ⊗ . . .⊗ (ωl t)⊗ . . .⊗ωk) = [ak,ω1 ⊗ . . .⊗ωl ⊗ . . .⊗ωk)t

= [ak t,ω1 ⊗ . . .⊗ωk)

for each t ∈ R and Ar additive

[ak,ω1 ⊗ . . .⊗ (ωl + κl)⊗ . . .⊗ωk)

= [ak,ω1 ⊗ . . .⊗ωl ⊗ . . .⊗ωk) + [ak,ω1 ⊗ . . .⊗ κl ⊗ . . .⊗ωk)

by any Ar valued test functions ωl and κl , when others are marked, l = 1, . . . , k ,

i.e. it is k R linear and k Ar additive, where [ak,ω1⊗ . . .⊗ωk) denotes a value

of ak on given test Ar valued functions ω1, . . . ,ωk ;

(P2) [akα,ω1 ⊗ . . .⊗ (ωlβ)⊗ . . .⊗ωk) = ([ak,ω1 ⊗ . . .⊗ωl ⊗ . . .⊗ωk)α)β =

[(akα)β ,ω1⊗ . . .⊗ωl⊗ . . .⊗ωk) for all real-valued test functions and α,β ∈ Ar ;

(P3) [ak,ωσ(1)⊗. . .⊗ωσ(k)) = [ak,ω1⊗. . .⊗ωk) for all real-valued test functions

and each transposition σ , i.e. bijective surjective mapping σ : {1, . . . , k} →

{1, . . . , k} .

Then ak will be called the symmetric k R linear k Ar additive continuous

functional, 1 ≤ k ∈ Z . The family of all such symmetric functionals is

denoted by B ′k,s(U ,Av) or D ′k,s(U ,Ar) correspondingly. A functional satisfying

Conditions (P1, P2) is called a continuous k -functional over Ar and their family is

denoted by B ′k(U ,Ar) or D ′k(U ,Ar) . When a situation is outlined we may omit

for short “continuous” or “k R linear k Av additive”.

The sum of two k -functionals over the Cayley-Dickson algebra Ar is prescribed

by the equality:
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(P4) [ak + bk,ω1 ⊗ . . .⊗ωk) = [ak,ω1 ⊗ . . .⊗ωk) + [bk,ω1 ⊗ . . .⊗ωk)

for each test functions. Using Formula (P4) each k -functional can be written as

[ak,ω1 ⊗ . . .⊗ωk)(1)

= [ak,0i0,ω1 ⊗ . . .⊗ωk) + . . .+[ak,2r−1i2r−1,ω1 ⊗ . . .⊗ωk),

where [ak, j ,ω
1⊗ . . .⊗ωk) ∈ R is real for all real-valued test functions ω1, . . . ,ωk

and each j ; i0 ,. . . , i2r−1 denote the standard generators of the Cayley-Dickson

algebra Ar .

The direct product ak ⊗ bp of two functionals ak and bp for the same space of

test functions is a k+p -functional over Ar given by the following three conditions:

(P5) [ak ⊗ bp,ω1 ⊗ . . .⊗ωk+p) = [ak,ω1 ⊗ . . .⊗ωk)[bp,ωk+1 ⊗ . . .⊗ωk+p)

for any real-valued test functions ω1, . . . ,ωk+p ;

(P6) if [bp,ωk+1⊗ . . .⊗ωk+p) ∈ R is real for any real-valued test functions, then

[(akN1)⊗ (bpN2),ω
1 ⊗ . . .⊗ωk+p) = ([ak ⊗ bp,ω1 ⊗ . . .⊗ωk+p)N1)N2

for any real-valued test functions ω1, . . . ,ωk+p and Cayley-Dickson numbers

N1, N2 ∈Ar ;

(P7) if [ak,ω1 ⊗ . . .⊗ωk) ∈ R and [bp,ωk+1 ⊗ . . .⊗ωk+p) ∈ R are real for any

real-valued test functions, then

[ak ⊗ bp,ω1 ⊗ . . .⊗ (ωl N1)⊗ . . .⊗ωk+p) = [ak ⊗ bp,ω1 ⊗ . . .⊗ωk+p)N1

for any real-valued test functions ω1, . . . ,ωk+p and each Cayley-Dickson number

N1 ∈Ar for each l = 1, . . . , k+ p .

Therefore, we can now consider a partial differential operator of order u acting

on a generalized function f ∈ B ′(U ,Ar) or f ∈ D ′(U ,Ar) and with generalized

coefficients either aα ∈B
′
|α|
(U ,Ar) or all aα ∈ D

′
|α|(U ,Ar) correspondingly:

Af (x) =
∑

|α|≤u

(∂ α f (x))⊗ [(aα(x))⊗ 1⊗(u−|α|)],(1)

where ∂ α f = ∂ |α| f (x)/∂ x
α0

0 . . .∂ xαn
n

, x = x0 i0 + . . . xn in , x j ∈ R for each

j , 1 ≤ n = 2r − 1, α = (α0, . . . ,αn) , |α| = α0 + . . . + αn , 0 ≤ α j ∈ Z ,

[1,ω) :=
∫

U
ω(y)λ(d y) , λ denotes the Lebesgue measure on U , for convenience

1⊗0 means the multiplication on the unit 1 ∈ R . The partial differential equation

Af = g(2)

in terms of generalized functions has a solution f means by the definition that

[Af ,ω⊗(u+1)) = [g,ω⊗(u+1))(3)

for each real-valued test function ω on U , where ω⊗k =ω⊗ . . .⊗ω denotes the

k times direct product of a test function ω .
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14. Anti-derivatives of First Order Partial Differential Operators with

Generalized Coefficients.

Theorem. Let Υ be a first order partial differential operator given by the formula

Υ f =

n
∑

j=0

(∂ f /∂ z j)⊗ [i
∗
j
ψ j(z)](1)

or

Υ f =

n
∑

j=0

(∂ f /∂ z j)⊗φ
∗
j
(z),(2)

where supp(ψ j(z)) = U or supp(φ j(z)) = U for each j respectively, f and ψ j(z)

or ψ j(z) are Av -valued generalized functions in B ′(U ,Ar) or D ′(U ,Ar) on the

domain U satisfying Conditions [14] 1(D1, D2), algR{[φ j,ω), [φk,ω), [φl ,ω)} is

alternative for all 0 ≤ j , k, l ≤ 2v − 1 and algR{[φ0,ω), . . . , [φ2v−1,ω)} ⊂ Av for

each real-valued test function ω on U . Then its anti-derivative operator IΥ exists

such that ΥIΥ f = f for each continuous generalized function f : U → Av and it

has an expression through line integrals of generalized functions.

Proof. When an operator with generalized coefficients is given by Formula (1) , we

shall take unknown generalized functions ν j(z) ∈Av as solutions of the system of

partial differential equations by real variables zk :

[(∂ ν j(z)/∂ z j)⊗ψ j(z),ω
⊗2) = [1,ω⊗2) for all 1≤ j ≤ n ;(3)

[ψk(z)⊗ (∂ ν j(z)/∂ zk),ω
⊗2) = [ψ j(z)⊗ (∂ νk(z)/∂ z j),ω

⊗2)(4)

for all 1≤ j < k ≤ n

and real-valued test functions ω on U .

If the operator is given by Formula (2) we consider the system of partial

differential equations:

[((d g(z)/dz) · [∂ ν j(z)/∂ zk])⊗φ
∗
k
(z)(5)

+ ((d g(z)/dz) · [∂ νk(z)/∂ z j])⊗φ
∗
j
(z),ω⊗2) = 0 for all 0≤ j<k≤n ;

∂ ν j(z)/∂ z j = φ j(z) for all j = 0, . . . , n ;(6)

[((d g(z)/dz) ·φ j(z))⊗φ
∗
j
(z),ω⊗2)=[ f (z)⊗ 1,ω⊗2) for each j=0, . . . , n(7)

and every real-valued test function ω .

Certainly the system of differential equations given by Formulas (3, 4) or (5–

7) have solutions in the spaces of test functions B(U ,Ar) or D(U ,Ar) , when

all functions ψ j or φ j are in the same space respectively. Applying §§4 or 5

[14] we find generalized functions ν j resolving these system of partial differential

equations correspondingly, when all functions ψ j or φ j are generalized functions,

since the spaces of test functions are dense in the spaces of left Ar -linear
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generalized functions (see § § 3 and 8). Substituting line integrals
∫

γ
q(y)dν j(y)

from [14] §§4 and 5 on line integrals [
∫

γ
q(y)dν j(y),ω

1⊗ω) from §8 one gets the

statement of this theorem, since test functions ω1 and ω in the line integrals of

generalized functions can also be taken real-valued and the real field is the center

of the Cayley-Dickson algebra Av . Therefore, we infer that

∂ [

∫

γα|<aα ,tz ]

f (y)dν j(y),ω⊗ω)/∂ zk = [ f̂ (z) · [dν j(z)/dzk],ω⊗ω)(8)

for each real-valued test function ω and z ∈ U , where γα(tz) = z , tz ∈ 〈aα, bα〉 ,

α ∈ Λ . Equality (8), Theorem 8 and Corollaries 9-11 and Conditions 13(P1-P7)

give the formula for an anti-derivative operator:

[IΥ f ,ω⊗ω) = [Υ

∫

f (z)dz,ω⊗ω)(9)

= (n+ 1)−1

n
∑

j=0

{[

∫

γα|[aα ,t]

q(y)dν j(y),ω⊗ω)

for each real-valued test-function ω , where α ∈ Λ , aα ≤ t ≤ bα , t = tz , z = γ(t) ,

consequently,

[ΥΥ

∫

f (y)d y,ω⊗3) = [ f ⊗ 1⊗ 1,ω⊗3).(10)

15. Note. Certainly, the case of the partial differential operator

Υ f =

n
∑

j=0

(∂ f /∂ zk( j))⊗φ
∗
k( j)
(z),(1)

where 0≤ k(0)< k(1)< . . . < k(n)≤ 2v−1 reduces to the considered in §14 case

by a suitable change of variables z 7→ y so that zk( j) = y j . In the next paper it is

planned to give examples of solutions of PDE with the help of formulas presented

in this article.
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