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Abstract. The vorticity of a vector field on 3-dimensional Euclidean space is usually given by the
curl of the vector field. In this paper, we extend this concept to n-dimensional compact and oriented
Riemannian manifold. We analyse many properties of this operation. We prove that a vector field on a
compact Riemannian manifold admits a unique Helmholtz decomposition and establish that every
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type identity.

Keywords. Manifold, Curl, Metric tensor flow, Hodge star operator, Helmholtz decomposition

Mathematics Subject Classification (2020). 58J65, 58J30, 53C20

Copyright © 2022 Louis Omenyi, Emmanuel Nwaeze, Friday Oyakhire and Monday Ekhator. This is an open access
article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction
Vorticity is a pseudovector field describing the local spinning motion of a flow near some point
on a manifold. In classical mechanics, the dynamics of a flow are described by its rotation and
expansion. Calin and Chang [8] expressed the rotation component by the curl vector, while the
expansion is described by the divergence function. The classical formulas involving rotation
and expansion in the case of smooth functions and vector fields on Riemannian manifolds show
that gradient vector fields do not rotate and that the curl vector field is incompressible. Varayu,
Chew et al. [6] among others showed that on Riemannian manifolds, the curl of a vector field is
not a vector field, but a tensor.
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Many studies on vorticity of flows on manifolds have been ongoing for many decades. For
example, Frankel [13] in fifties established how homology of manifolds influences vector and
tensor fields on the manifolds. It showed that the vector fields give rise to one-parameter
groups of point divergence-free transformations of the manifolds. The work of Xie and Mar [26]
employed Poisson equation for stream and vorticity equation to study 2-dimensional vorticity
and stream function expanded in general curvilinear coordinates. It constructed numerical
algorithms of covariant, anti-covariant metric tensor and Christoffel symbols of the first and
second kinds in curvilinear coordinates. Similarly, Perez-Garcia [24] studied exact solutions
of the vorticity equation on the sphere as a manifold. In the work of Peng and Yang [23], the
existence of the curl operator on higher dimensional Euclidean space, Rn, n > 3, was proved.

More recently, Bauer, Kolev and Preston [5] carried out a geometric investigations of a
vorticity model equation extending the works of [9,12,15,16,22,25] and Kim [18] on vorticity
to manifold study. Besides, Deshmukh, Pesta and Turki [11] went ahead to show that the
presence of a geodesic vector field on a Riemannian manifold influences its geometry while Bär
[4] and Müller [20] extended the curl and divergence operators to odd-dimensional manifolds in
arbitrary basis.

In this study, we extend the concept of vorticity to n-dimensional compact and oriented
Riemannian manifolds and analyse many properties of this operation. We proceed with fixing
our notations and briefly explaining some basic concepts required to follow the discussions.

Let (M, g) be a Riemannian manifold. By this we mean that M is a topological space that
is locally similar to the Euclidean space and g is the Riemannian metric on M. We recall that
a Riemannian metric g on a smooth manifold M is a symmetric, positive definite (0,2)-tensor
field, see e.g. [1,17,19] and [14]. This means that for any point p ∈ M, the metric is the map
gp : TpM ×TpM → R that is a positive definite scalar product for a tangent space TpM. The
Riemannian metric enables to measure distances, angles and lengths of vectors and curves on
the manifold, see e.g. [3, 7, 10, 17] and [19], for details. We denote the Riemannian manifold
(M, g) simply by M. The manifold M is called compact if it is compact as a topological space. If
M is a smooth manifold, then [8] and [1] proved that there is at least one Riemannian metric on
M.

We call a function f : M → R smooth if for every chart (U ,φ) on M, and the function
f ◦φ−1 :φ(U)→R is smooth. The set of all smooth functions on the manifold M will be denoted
by C∞(M). Let Ωk denote the vector space of smooth k-forms on M, and let d :Ωk →Ωk+1 be
the exterior derivative. Note that the metric which gives an inner product on the tangent space
TpM at each p ∈ M induces a natural metric on each cotangent space T∗

pM, as follows. At p,
let {b1,b2, · · · ,bn} be an orthonormal basis for the tangent space. One obtains a metric on the
cotangent space by declaring that the dual basis {b1,b2, · · · ,bn} is orthonormal. Hence given any
two k-forms β and γ, we have that (β,γ) is a function on M. We call (·, ·) the pointwise inner
product; see e.g. [7,10,14,19] and [21]. For a coordinate chart on M,

(x1, · · · , xn) : U →Rn,

we represent g by the Gram matrix (g i j) where g i j = 〈 ∂
∂xi ,

∂
∂x j 〉, and 〈,〉 is the inner product on

Communications in Mathematics and Applications, Vol. 13, No. 2, pp. 539–552, 2022



Vorticity Gramian of compact Riemannian Manifolds: L. Omenyi et al 541

the tangent space. The volume form dV is defined be b1∧b2∧·· ·∧bn, and it is a well-known
fact from linear algebra that dV = √|g|dx where dx = dx1 ∧ ·· ·∧ dxn. Using the point-wise
inner product above, one writes the L2-inner product on Ωk(M) as

〈β,γ〉 =
∫

M
(β,γ)dV , for all β,γ ∈Ωk(M).

2. Vector Fields and Differential Operators

Vector fields and differential operators are the main tools used in the analysis of vorticity in
this work. We employ these tools to construct the curl operator on M and analyse its many
properties.

A vector field on M is a family {X (p)}p∈M of tangent vectors such that X (p) ∈ TpM for any
p ∈ M. In local coordinates chart (x1, · · · , xn),

X (p)= X i(p)
∂

∂xi|x=p
.

The vector field X (p) is called smooth if all functions X i are smooth in any chart in M; see e.g.
[1,7] and [8]. We denote the set of all vector fields on M by Γ(M).

Definition 2.1 ([10,14]). For every p ∈ M the differential map d f at p is defined by

d fp : TpM → T f (p)N with d fp(V )(h)=V (h◦ f ), for all V ∈ TpM, for all h ∈ C∞(N).

Locally, it is given by

d fp

(
∂

∂x j|p

)
=

n∑
k=1

∂ f k

∂x j|p

∂

∂yk ,

where f = ( f 1, f 2, · · · , f n). The matrix
(
∂ f k

∂x j

)
k, j

is the Jacobian of f with respect to the charts

(x1, x2, · · · , xn) and (y1, y2, · · · , yn) on M and N , respectively.

Definition 2.2. Let f ∈ C∞(M) be a smooth function. The gradient of f , denoted by grad f , is a
vector field on M metrically equivalent to the differential d f of f :

g(grad f , X )= d f (X )= X ( f ), for all X ∈Γ(M).

Definition 2.3. Let X ∈Γ(M) on M. The divergence of X at the point p ∈ M denoted as ∂X is
defined locally as

∂X =
n∑

i=1
X i

;i =
n∑

i=1

(
∂X i

∂xi
+∑

j
Γi

i j X
j

)
,

where

Γi
jk =

1
2

gil
(
∂g jl

∂xk
+ ∂gkl

∂x j
− ∂g jk

∂xl

)
is the Christoffel symbol. In local coordinates,

∂X = 1√|g|
∂

∂x j
(
√

|g|X j)

with summation over j = 1, · · · ,n.
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Definition 2.4. The Lie bracket [, ] :Γ(M)×Γ(M)→Γ(M) is defined by

[X ,Y ]= X (Y )−Y (X ), for all X ,Y ∈Γ(M).

Locally,

[X ,Y ]=
n∑

i, j=1

(
∂Y i

∂x j
X j − ∂X i

∂x j
Y j

)
∂

∂xi
.

If [U ,V ]= 0, we say that the vector fields commute.

An extension of the usual directional derivative on the Euclidean space to smooth manifold
is linear connection.

Definition 2.5. A linear connection ∇ on M is a map ∇ :Γ(M)×Γ(M)→Γ(M) such that ∇X Y is
C∞(M) in X and linear in Y over the real field with ∇X ( f Y )= (X f )Y + f∇X Y , for all f ∈ C∞(M).

We note that ∇X Y is a new vector field which, roughly speaking, is the vector rate of change
of Y in the direction of X . A particular connection on Riemannian manifolds that is torsion-free
is the Levi-Civita connection. The Levi-Civita connection is defined in local coordinates as

∇X Y =
n∑

i,k
X i

(
∂Y k

∂xi
+∑

j
Γk

i jW
j

)
∂

∂xk
,

where

X =
n∑

i=1
X i ∂

∂xi
, Y =

n∑
k=1

Y k ∂

∂xk

and Γk
i j are the Christoffel symbols defined by

Γk
i j =

1
2

∑
m

gkm
(
∂g jm

∂xi
+ ∂g im

∂x j
− ∂g i j

∂xm

)
,

where (gkm) is the inverse of (g i j). Note that X is a Killing vector field if LX g = 0.
Let M be a compact n-dimensional Riemannian manifold. A vector field on M which

generates isometries of the Riemannian metrics is represented by a Killing vector field v = vi e i ,
where e i = ∂

∂xi
. A Killing vector satisfies the differential equation vi| j = −v j|i where solidus

indicates covariant differentiation. In particular, a Killing vector is divergence free with respect
to the volume density

√|g|, that is,
1√|g|

∂

∂xi

(√|g|vi)= vi|i = 0

since a distance preserving map conserves volume automatically. Thus, a Killing vector, in
particular, is an isometric flow. We also need to clarify the notion of tensor on M.

Definition 2.6. A tensor of type (r, s) at p ∈ M is a multi-linear function

T : (T∗
pM)r × (TpM)s →R.

A tensor field T of type (r, s) is a smooth map, which assigns to each point p ∈ M an (r, s)-tensor
Tp on M at the point p. In local coordinates,

T =T i1 i2···is
j1 j2··· jr

dx j1 ⊗dx j2 ⊗·· ·⊗dx jr ⊗ ∂

∂xi1

⊗ ∂

∂xi2

⊗·· ·⊗ ∂

∂xis

.
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T acts on r one-forms and s vector fields thus

T (ω1,ω2, · · · ,ωr, X1, X2, · · · , Xs)

=T i1 i2···is
j1 j2··· jr

dx j1(X1)dx j2(X2) · · ·dx jr (Xr)
∂

∂xi1

(ω1)
∂

∂xi2

(ω2) · · · ∂

∂xis

(ωs)

=T i1 i2···is
j1 j2··· jr

X j1
1 X j2

2 · · ·X jr
r ω

i1
1 ω

i2
2 · · ·ωis

s .

We say the tensor T is s covariant and r contravariant.

Let M be a compact n-dimensional manifold and let ρ be a positive scalar density on M.
A p-tensor

ω=ωi1···i p e i1 ∧·· ·∧ e i p

is classically a skew-symmetric contravariant tensor of order p, where e i = ∂
∂xi

are the vectors
of the coordinate frame (basis vectors). Let Tp be the linear space of all p-tensors on all of
the manifold, M. We can now define the divergence of a tensor field.

Definition 2.7. The divergence of a p-tensor ω written ∂ω is the (p−1)-tensor

∂ω= 1
ρ

∂

∂x j

(
ρωi1···i p e i1 ∧·· ·∧ e i p

)
.

Let Vp = {ω ∈ Tp : ∂ω= 0} be the linear space of divergence-free p-tensors and let the linear
space of p-tensor divergences be

Dp = {ω ∈ Tp :ω= ∂ω′ for some ω′ ∈ Tp+1}.

For p = 0 we have that the p-tensor is the ordinary scalar function. For such functions f , we
have that ∂ f = 0. An easy calculation show that ∂2 −∂∂= 0, hence, Dp is a linear subspace of
Vp . We have the following preliminary results in form of lemmas.

Lemma 2.8. Let X ∈ Γ(M), T be an (n,0)-tensor field and dV be the volume form on M. Let
LX be the Lie derivative of T , then LX dV = (∂X )dV .

Proof. We recall that T = dV =√|g|dx1 ∧dx2 ∧·· ·∧dxn is an (n,0)-tensor field on M. The Lie
derivative LX of T given by LX (T) = T12···ndx1 ∧dx2 ∧·· ·∧dxn is also an (n,0)-tensor or an
n-form LX (T) = (LX T)12···ndx1 ∧dx2 ∧·· ·∧dxn. We need to show that (LX T)12···n = (∂X )

p
g.

Indeed, using the formula which gives the components of the Lie derivative of a tensor, we have

(LX T)12···n = ∂T12···n
∂xi

X i +T j12···n ∂X1

∂x j1

+T2 j2···n ∂X2

∂x j2

+·· ·+T12··· jn
∂X n

∂x jn

.

As T12··· jp···n = δp, jp T12···p···n, we get

(LX T)12···n = ∂T12···n
∂xi

X i +T12···n
(
∂X1

∂x1
+·· ·+ ∂X n

∂xn

)
= ∂T12···n

∂xi
X i +T12···n

∂X i

∂xi

=
p

g
∂xi

+p
g
∂X i

∂xi
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= ∂

∂xi

(p
gX i)

= 1p
g
∂

∂xi

(p
gX i)pg

= (∂X
p

g).

Hence, LX T = ∂X
p

gdx1 ∧dx1 ∧·· ·∧dxn = ∂X dV .

Lemma 2.9. Let f ∈ C∞(M) and X ∈Γ(M). Then ∂( f X )= f ∂X + g(grad f , X ).

Proof. From the definition of the ∂ operator, we have

∂( f X )= 1p
g

∂

∂x j

(p
gf X j)pg

= 1p
g
∂ f
∂x j

p
gX j + f

1p
g
∂ f
∂x j

(
p

gX j)

= ∂ f
∂x j

X j + f ∂X

= gk j(grad f )k X j + f ∂X

= g(grad f , X )+ f ∂X .

Using that LX dV = (∂X )dV , for all X ∈Γ(M), the result follows.

We define the adjoint operator δ :Ωk →Ωk+1 of d by requiring that 〈ω,δβ〉 = 〈dω,β〉, for all
ω ∈Ωk−1, and β ∈Ωk using the L2 inner product on Ωk(M). From the metric g, we can also
define the Hodge star operator ∗ :Ωk →Ωn−k by requiring that for all β,γ ∈Ωk , β∧∗γ= (β,γ)dV .
Notice that the Hodge star operator ∗ is linear and point-wise. Therefore, the inner product on
Ωk can be written as 〈β,γ〉 = ∫

M β∧∗γ. So, one can find an expression for δ acting on one-forms.
Given f ∈Ω0 and ω ∈Ω1, we have

〈 f ,δω〉 = 〈d f ,ω〉
=

∫
M

d f ∧∗ω

=
∫

M
[d( f ∧∗ω)− f ∧d∗ω]

=
∫

M
− f ∧d∗ω

=−
∫

M
f ∧∗2d∗ω

=
∫

M
f ∧∗(−∗d∗)ω

= 〈 f , (−∗d∗)ω〉.
Now, we can go on to construct vorticity through the curl operator on the compact Riemannian

manifold M and study their flow vorticity.
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3. Vorticity of Flows
Let X be a vector field on an open subset of U ⊂ M and ωX be the associated 1-form on U dual
to X . So, for each p ∈U , the linear functional ωX (p) ∈ T∗M on TpM is 〈X (p), ·〉. It follows that
the assignment X 7→ωX is additive in X and linear with respect to multiplication by smooth
function on U . Let V be a finite dimensional vector space with inner product 〈,〉, then the dual
vector space V∗ is naturally isomorphic to V under the map

α : V →V∗, with α(v)= v∗ ∈V∗, satisfying v∗(w)= 〈v,w〉, for all v,w ∈V .

These lead to define the curl operator taking vector fields to vector fields to be

curl X =α−1 ∗dαX = g−1 ∗dg(X ) .

In coordinate form, the curl of a vector field X on a Riemannian manifold M is a 2-covariant
antisymmetric tensor A with the components A i j given by

A i j = X i; j − X j;i = ∂X i

∂x j
− ∂X j

∂xi
.

In particular, a Riemannian metric on a manifold M is an assignment of inner product on each
cotangent space T∗

pM under the isomorphism α. The inner product g induces an inner product
on each of the tensor product TpM⊗·· ·⊗TpM.

Definition 3.1. Let X ∈Γ(U) with U open in M, the function div(X ) ∈ C∞(U) is characterised
by

d(∗(ωX ))= div(X )dVM
∣∣
U .

To see this, let M = Rn with the standard flat Riemannian metric and orientation in
the standard linear coordinates {x1, · · · , xn}. If X = ∑

X j∂x j ∈ Γ(U) is a vector field, since the
volume form determined by this metric and orientation is dx1 ∧·· ·∧dxn, we have

d(∗(ωX ))= d
(∗(∑

X jdX j
))

= d
(∑

X j ∗ (dX j)
)

= d
(∑

(−1) j−1X jdx1 ∧·· ·∧ d̂xn ∧·· ·∧dxn

)
=∑

(−1) j−1dX j ∧dx1 ∧·· ·∧ d̂xn ∧·· ·∧dxn

=∑(
∂X j

∂x j

)
dx1 ∧·· ·∧dxn

=∑(
∂X j

∂x j

)
dVM

=
n∑

j=1

∂X j

∂x j

= div(X ).

Our definition of divergence of a vector field was intrinsic to the Riemannian structure and
orientation, thus, we can likewise compute the divergence in any oriented coordinate system on
M. We make the next definition.
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Definition 3.2. Let M be a Riemannian manifold with corners. For an open U ⊆ M and
f ∈ C∞(U), the smooth vector, grad( f ), on U is defined by the condition: ωgrad( f ) = d f ∈Ω1

M(U).
That is, for each p ∈U , we have 〈grad( f ), ·〉 = d f (p) is a linear functional on TpM.

Now, let M be a Riemannian manifold without boundary and N be an oriented submanifold
with boundary inside of M with constant dimension 1. Let N be given the induced Riemannian
metric of M. So the boundary ∂N is assigned a collection of signs E (p) ∈ {±1} for each p ∈ ∂N
where E is the usual Levi-Civita symbol defined by

Ea1,··· ,an =


+1, if (a1, · · · ,an) is an even permutation of 1,2, · · · ,n,
−1, if (a1, · · · ,an) is an odd permutation of 1,2, · · · ,n,
0, if otherwise;

see e.g. [3] and [7]. Let dl be the length form on N and T be the tangent field dual to dl. It can
be proved that for any f ∈ C∞(M) for which f

∣∣
N ∈ C∞(N) is compactly supported, the smooth

inner product function 〈grad( f )
∣∣
N ,T〉 is compactly supported on N and∫

N
〈grad( f )

∣∣
N ,T〉dl = ∑

p∈∂N
E (p) f (p).

In this way, we see that vector fields give rise to one-parameter groups of point
transformations of the the manifold and one may be interested in those point transformations
that are divergence-free. We call such vectors and their associated transformations simply
“flows". The next lemma ensures the existence of vector fields generating flows on M.

Lemma 3.3. Let V be a nonzero vector field at a point p on the manifold M. Then there exists
a system of coordinates (x̄1, x̄2, · · · , x̄n) about p such that there is j ∈ {1, · · · ,n} for which V = ∂

∂x̄ j
.

We call this rectification lemma.

Proof. This lemma follows from the fact that in a compact Riemannian manifold, M, if p ∈ M
there is an open neighbourhood V of p in the ambient manifold Rn+1 such that if U ⊂Rn is open
and φ : U →Rn+1 is smooth, then φ(U) is a homomorphism. Besides, any transition Jacobian on
U for change of coordinates has full rank for every p ∈U . This proves the lemma.

Given a vector field X , consider the system
dck

dt
= X k(c(t)), k = 1,2, · · · ,n, (3.1)

where c(t) is the integral curve associated with X . The next result shows that the system (3.1)
can be solved locally around the point x0 = c(0), for 0< t < ϵ.

Proposition 3.4 (Existence and Uniqueness). Given x0 ∈ M and let X be a nonzero vector field
on an open set U ⊂ M of x0, then there is ϵ> 0 such that the system (3.1) has a unique solution
c : [0,ϵ)→U such that c(0)= x0.

Proof. By the rectification lemma, there is a local change of coordinates x̄ =φ(x) such that the
system (3.1) becomes

dck

dt
= δkn, k = 1,2, · · · ,n where c̄ =φ(c).
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This system has a unique solution through the point x̄0 =φ(x0) given by

c̄k(t)= x̄k
0 , k = 1,2, · · · ,n−1 and c̄n(t)= t+ x̄n

0 .

Hence this will hold also for the system (3.1) in a neighbourhood of x0 =φ−1(x̄0).

Let f j := ∂ f
∂x j

, and f i := gi j f j so that ∇ f = f i ∂
∂x = gi j ∂ f

∂x j
∂
∂x , we have more propositions that

will lead us to the main results of this work.

Proposition 3.5. If X ∈Γ(M) then X = gradφ ⇐⇒ curl X = 0 and tr(curl X )= 0.

Proof. Let X = gradφ, then X k = gk j ∂φ
∂x j

and X i = ∂φ

∂xi
. So, we have

(curl X )i j = ∂X i

∂x j
− ∂X j

∂xi
= ∂2φ

∂x j∂xi
− ∂2φ

∂xi∂x j
= 0.

Conversely, let X ∈ Γ(M) such that curl X = 0. Then, ∂X i
∂x j

= ∂X j
∂xi

. Thus, the 1-form ω=∑
Xkdxk

is exact. This means there is a locally defined function such that ω = d f = ∑ ∂ f
∂xk

dxk. Thus,

Xk = X j . Besides, tr(curl X )= gi j(X i; j − X j;i)= X j
; j − X i

;i = 0; which completes the proof.

Let 〈,〉 be the Riemannian metric with associated Levi-Civita connection ∇. We prove global
and invariant properties of the curl operator on M.

Proposition 3.6. If A = curl X , then A(U ,V )= 〈∇V X ,U〉−〈∇U X ,V 〉, for all U ,V ∈Γ(M).

Proof. For every U ,V ∈Γ(M), we have

A(U ,V )= A i jU iV j = (X i; j − X j;i)U iV j

= (∇∂ j X )iU iV j − (∇∂i X ) jU iV j

= 〈∇∂ j X ,U〉V j −〈∇∂i X ,U〉U i

= 〈∇V j∂ j
X ,U〉−〈∇U i∂ j

X ,V 〉
= 〈∇V X ,U〉−〈∇U X ,V 〉.

Proposition 3.7. Let A = curl X , where X ∈Γ(M). Then

A(U ,V )=V 〈X ,U〉−U〈X ,V 〉+〈X , [U ,V ]〉.

Proof. Since ∇ is a metric connection

V 〈X ,U〉 = 〈∇V X ,U〉+〈X ,∇VU〉 and U〈X ,V 〉 = 〈∇U X ,V 〉+〈X ,∇UV 〉.
Using the symmetry of ∇, subtracting we obtain

V 〈X ,U〉−U〈X ,V 〉 = A(U ,V )+〈X , [V ,U]〉,
which proves the claim.

The following result shows the relation between the curl, Levi-Civita connection and the Lie
derivative.

Proposition 3.8. If A = curl X and ∇ is the Levi-Civita connection on M, then

A(U ,V )= 2〈∇V X ,U〉− (LX g)(U ,V ).
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Proof. We have

2〈∇V X ,U〉 =V 〈X ,U〉+ X 〈U ,V 〉−U〈V , X 〉−〈V , [X ,U]〉+〈X , [U ,V ]〉+〈U , [V , X ]〉.
That is,

2〈∇V X ,U〉 = A(U ,V )+ X 〈U ,V 〉−〈V , [X ,U]〉+〈U , [V , X ]〉
= A(U ,V )+ X 〈U ,V 〉−〈V ,LXU〉−〈U ,LX V 〉.

Using that (LX g)(U ,V )= X 〈U ,V 〉−〈LXU ,V 〉−〈U ,LX V 〉, we obtain

2〈∇V X ,U〉 = A(U ,V )+ (LX g)(U ,V ).

We can now show a Helmholtz decomposition of vector fields on M. This is the theorem
that follows. That is, we prove that a vector field X on a compact Riemannian manifold can be
uniquely decomposed as a sum of two vectors Y and Z, where Y is the rotation component and
Z the expansion component.

Theorem 3.9. If X ∈Γ(M), there are two vector fields Y and Z on M such that X =Y +Z, with
divY = 0 and curl Z = 0. Moreover, the decomposition is unique.

Proof. Let η = div X and let φ solve the elliptic equation ∇◦∇φ = ∆φ = η. Take Z = ∇φ and
Y = X −∇φ. Then curl Z = curl∇φ = 0 and divY = η−∇φ = 0. This proves the existence of Y
and Z.
Now, suppose two decompositions of X so that X =Y1 +Z1 =Y2 +Z2. As curl Z1 = 0, it follows
that there are two functions φi , i = 1,2 such that Zi =∇φi , i = 1,2.
So, Y2 −Y1 =∇(φ2 −φ1).
Denote W =Y2 −Y1 and φ=φ2 −φ1 then divW = div∇φ. Since divY2 −divY1 = 0 we get ∆φ= 0,
thus, φ2 −φ1 must be constant. Taking the gradient yields Z2 −Z1 = 0. Then, we have also that
Y1 =Y2, hence the decomposition is unique.

For example, let X = (x1 − x2)∂x1 + (x1 + x2)∂x2 . Then the Helmholtz decomposition is

X =Y +Z with Y = x1∂x1 + x2∂x2 and Z =−x2∂x1 + x1∂x2 .

To visualise this, we consider the 2-dimensional unit sphere with a local parametrisation

Φ :
(
−π

2
,
π

2

)
→R3 with Φ(θ,φ)=

cosθ cosφ
cosθsinφ

sinθ

 .

The differentials ∂Φ
∂θ

and ∂Φ
∂φ

give the Gramian g = (
g i j

)
i j =

(
1 0
0 cos2θ

)
which has the associated

vector field flow XS2 = (1,cos2θ) and stream plot as Figure 1. Observe that XS2 is divergence-free
and that curl XS2 =−2cosθsinθ.

By the Helmholtz decomposition,

XS2 =YS2 +ZS2 with YS2 = XS2 and ZS2 = (−cos2θ,1) with curl ZS2 = 0.

The stream plot of the Helmholtz decomposed XS2 flow is Figure 2.
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Out[ ]=

Figure 1. Stream plot of the vector field XS2 on S2

Out[ ]=

Figure 2. Stream plot of the decomposed XS2
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Finally, another main result of this work is the Stokes’ type result:

Theorem 3.10. Let X be smooth vector field on an open neighbourhood U of Z ⊆ M with X
∣∣
Z

compactly supported and let dA be the area form on Z. Then the smooth function 〈curl(X )
∣∣
Z , N̂〉

on Z, where N̂ is the outward unit normal field along Z in M, is compactly supported and
satisfies the Stokes’ type identity∫

Z
〈curl(X )

∣∣
Z , N̂〉dA =

∫
∂Z

〈X ∣∣
∂Z ,T〉dl. (3.2)

Proof. Let η=ωX ∈Ω1
M(U) be dual to X . Thus η

∣∣
Z ∈Ω1

Z(Z) is compactly supported as it vanishes
at points where X

∣∣
Z vanishes. By the definition of the curl, we have ωcurl(X ) = ∗(dη). Since

∗◦∗= (−1)r(n−r) on r-forms on an n- dimensional manifold, for n = 3 and r = 1, we have ∗◦∗= 1
on 1-forms on U , so dη=∗(ωcurl(X )). Similarly,

〈curl(X )
∣∣
Z , N̂〉dA = (dη)

∣∣
Z

inside of Ω2
Z(Z). But (dη)

∣∣
Z = d(η

∣∣
Z) since d and pullback commute along the closed embedding

of Z into M. This is compactly supported on Z. For compactly supported 1-form η
∣∣
Z on the

2-dimensional manifold Z with boundary, we get∫
Z
〈curl(X )

∣∣
Z , N̂〉dA =

∫
Z

(dη)
∣∣
Z =

∫
Z

d(η
∣∣
Z)=

∫
∂Z
η
∣∣
∂Z

showing (3.2).
Thus our problem comes to proving the identity η

∣∣
∂Z = 〈X ∣∣

∂Z ,T〉dl ∈ Ω1
∂Z(∂Z). But since

η|Z =ωX |Z ∈Ω1
Z(Z) it follows that ωX |Z =ωX Z pointwise.

Let X |Z =G and G|∂Z = H, we want to prove that for any smooth vector field H along ∂Z,

〈H,T〉dl =ωH ∈Ω1
∂Z(∂Z) (3.3)

generally for any 1-dimensional Riemannian manifold C with length form dl dual to the tangent
field T . Evaluating both sides of (3.3) at a point p ∈ C, we obtain a 1-dimensional real vector
space V endowed with an inner product. So, let V = TpC, if v ∈ V with length for φ, and for
t ∈ V the vector dual to φ we have 〈v, t〉φ= 〈v, ·〉 is in the dual space. It suffices to check this
equality when evaluating both sides on the basis {t}. But since φ(t) = 1 by the definition of t,
the result follows.

4. Conclusion
We have constructed vorticity of vector field flows on compact smooth Riemannian manifolds
through differential operators mainly the curl and the divergence operators. Many properties
of vorticity on the manifolds were established and we proved that a vector field on a compact
Riemannian manifold admits a unique Helmholtz decomposition. We also proved a Stokes’ type
identity for the curl operator on smooth tensor fields on M.

This study can be extended to applications of the central ideas of the paper to physical flow
problems in engineering and industry. One can as well study the vorticity of climate variabilities
on the earth surface using the machinery developed in this paper. This will throw more light on
the mathematical analysis of climate change.
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