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1. Introduction
Fibonacci sequence, which is a sequence of integers, is the most popular second order sequence
with fascinating application and theory in various areas of modern science. The Fibonacci
sequence, {Fn} is defined by recurrence relation Fn = Fn−1 +Fn−2 with the initial values F0 = 0,
F1 = 1 for n ≥ 2 and there are many studies on this sequence and its generalizations [1–27].
Using the recurrence relation of Fibonacci sequence and different initial conditions, new number
sequences can be created as Fibonacci type sequences. For instance, Lucas sequence, {Ln} is
defined by recurrence relation Ln = Ln−1 +Ln−2 with initial values L0 = 2, L1 = 1 for n ≥ 2.
There is no unique generalization of this sequence. Falcon and Plaza introduced the k-Fibonacci
sequences and k-Lucas sequences by recurrence relations Fk,n = kFk,n−1 +Fk,n−2 with Fk,0 = 0,
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Fk,1 = 1 and Lk,n = kLk,n−1 +Lk,n−2 with Lk,0 = 2, Lk,1 = k for n ≥ 2, k ≥ 1, respectively [2,3].
Large classes of polynomials are emerged as the well-known generalizations of Fibonacci

sequences. Such polynomials, called the Fibonacci polynomials, are defined by

f0(x)= 0 and f1(x)= 1, fn(x)= xfn−1(x)+ fn−2(x), n ≥ 2 .

Using the recurrence relation of Fibonacci polynomials and different initial conditions, Lucas
polynomials, are defined by

l0(x)= 2 and l1(x)= x, ln(x)= xln−1(x)+ ln−2(x), n ≥ 2.

The Fibonacci polynomials have been studied by many authors and are called generalized
Fibonacci polynomials. For instance, bivariate Fibonacci polynomials and bivariate Lucas
polynomials are defined as

Fn(x, y)= xFn−1(x, y)+ yFn−2(x, y), Fn(x, y)= 0, F1(x, y)= 1, n ≥ 2

and

Ln(x, y)= xLn−1(x, y)+ yLn−2(x, y), L0(x, y)= 2, L1(x, y)= x, n ≥ 2,

x, y ̸= 0 and x2+4y ̸= 0, respectively. Generalized identities of these polynomials are obtained [15].
In [12], the authors defined h(x)-Fibonacci polynomials as a generalization of Fibonacci
polynomials and h(x)-Lucas polynomials as a generalization of Lucas polynomials by recurrence
relations

Fh,n(x)= h(x)Fh,n−1(x)+Fh,n−2(x), Fh,n(x)= 0, Fh,1(x)= 1, n ≥ 2

and

Lh,n(x)= h(x)Lh,n−1(x)+Lh,n−2(x), Lh,0(x)= 2, Lh,1(x)= h(x), n ≥ 2,

where h(x) is a polynomial with real coefficients, respectively. Several authors presented
generating functions, exponential generating functions, Binet-like formulas, sums formulas,
matrix representations, periods according to the m modulo of Fibonacci polynomial sequences
and obtained many generalizations of these sequences [4–7,14]. Koshy introduced one of the
most comprehensive sources contains the applications, generalizations and recurrence relations
of Fibonacci and Lucas sequences [9]. As can be seen from the studies in the literature, Fn

and Ln are very closely related and hence generalized Fibonacci numbers and polynomials are
studied as generalized Fibonacci type and generalized Lucas type numbers and polynomials,
respectively.

Motivated by of the above-cited studies, it is introduced a new generalization of the Fibonacci
type and Lucas type numbers and polynomials called generalized Fibonacci polynomials.
The generalized Fibonacci polynomial sequence, {Gn(x)}n≥0 is defined by the recurrence relation

G0(x)= p0(x),G1(x)= p1(x), Gn(x)= d(x)Gn−1(x)+ g(x)Gn−2(x), n ≥ 2, (1.1)

where p0(x) is a constant and p1(x), d(x) and g(x) are fixed non-zero polynomials in Q[x] with
gcd(d(x), g(x))= 1 [4,5]. If eq. (1.1) satisfies the following recurrence relation,

F0(x)= 0,F1(x)= 1, Fn(x)= d(x)Fn−1(x)+ g(x)Fn−2(x), n ≥ 2, (1.2)
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where d(x), and g(x) are fixed non-zero polynomials in Q[x], it is called Fibonacci type
polynomials, denoted by Gn(x)= Fn(x). Obviously, for d(x)= x and g(x)= 1 we obtain classical
Fibonacci polynomial and Fn(1)= Fn where Fn is the nth classical Fibonacci number. If eq. (1.1)
satisfies the following recurrence relation,

L0(x)= p0, L1(x)= p1(x), Ln(x)= d(x)Ln−1(x)+ g(x)Ln−2(x), n ≥ 2, (1.3)

where |p0| = 1 or 2 and p1(x),d(x)=αp1(x), and g(x) are fixed non-zero polynomials in Q[x] with
α an integer of the form 2/p0, it is called Lucas type polynomials, denoted by Gn(x)= Ln(x). Also,
for p0 = 2, p1(x)= x,d(x)= x and g(x)= 1 we obtain classical Lucas polynomial and Ln(1)= Ln

where Ln is the nth classical Lucas number.
Now, we present the Binet formulas for the generalized Fibonacci polynomials. For

d2(x)+4g(x)> 0, the explicit formula for the recurrence relation in (1.1) is given by

Gn(x)= Aσn(x)+Bρn(x), n ≥ 0, (1.4)

where σ(x) and ρ(x) are the roots of the quadratic equation t2 −d(x)t− g(x)= 0 of eq. (1.1) with

A = p1(x)− p0(x)ρ(x)
σ(x)−ρ(x)

and B = −p1(x)+ p0(x)σ(x)
σ(x)−ρ(x)

.

So if A and B are used in eq. (1.4), we obtain the Binet formulas of the generalized Fibonacci
polynomials by

Gn(x)= p1(x)(σn(x)−ρn(x))+ p0(x)g(x)(σn−1(x)−ρn−1(x))
σ(x)−ρ(x)

. (1.5)

If eq. (1.5) is used for recurrence relations (1.2) and (1.3) with α= 2/p0, the Binet formulas for
the Fibonacci type and Lucas type polynomials are given by

Fn(x)= σn(x)−ρn(x)
σ(x)−ρ(x)

(1.6)

and

Ln(x)= σn(x)+ρn(x)
α

, (1.7)

respectively. Note that roots σ(x) and ρ(x) hold

σ(x)+ρ(x)= d(x),

σ(x)ρ(x)=−g(x),

σ(x)−ρ(x)=
√

d2(x)+4g(x) .

where d(x) and g(x) are the polynomials defined for recurrence relations (1.2) and (1.3).
The readers can find more detailed information about the generalized Fibonacci polynomials
in [4,5].

Özdemir [13] introduced the set of hybrid numbers denoted by K which a new generalization
complex, dual and hyperbolic numbers. Hybrid numbers, which have applications in different
fields of mathematics, are a new number system that is not commutative. The set of hybrid
numbers is defined as

K= {a+bi+ cε+dh : a,b, c,d ∈R, i2 =−1, ε2 = 0, h2 = 1, ih =−hi = ε+ i}.
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For z1 = a+bi+ cε+dh and z2 = x+ yi+ zε+ th are defined as

Equality: z1 = z2 only if a = x, b = y, c = z, d = t

Addition and subtraction: z1 ± z2 = (a± x)+ (b± y)i+ (c± z)ε+ (d± t)h

Multiplication: z1z2 = ax−by+dt+bz+ cy+ i(ay+bx+bt−d y)
+(az+ cx+bt−dy+dz− ct)ε+ (at+dx+ cy−bz)h

The multiplication of a hybrid number z = a+bi+ cε+dh by the real scalar k is defined as

kz = ka+kbi+kcε+kdh.

Multiplication of hybrid numbers is associative and not commutative. Addition in the hybrid
numbers is both associative and commutative. Zero 0 = 0+0i+0ε+0h is the null element.
The additive inverse of z, hybrid number is −z =−a−bi− cε−dh. This implies that, (K;+) is
an Abelian group. The readers can find more detailed information about the hybrid numbers
in [13]. The multiplication table of the basis of hybrid numbers are as follows:

Table 1. The multiplication of hybrid units of K

· 1 i ε h
1 1 i ε h
i i −1 1−h ε+ i
ε ε 1+h 0 − ε

h h −ε− i ε 1

Many studies on new type of hybrid numbers by using special integer sequences such as
Fibonacci, Lucas, Pell, Jacobsthal, Tribonacci and Tribonacci-Lucas numbers, etc have been
introduced, called hybrid sequences in recent years. For instance, in [21–24], the authors defined
the Fibonacci hybrid numbers, the Pell and Pell-Lucas hybrid numbers and the Jacosthal and
Jacosthal-Lucas hybrid numbers, Horadam hybrid numbers, generalized their results and
obtained various properties of these numbers. Polatlı obtained the divisibility properties of
the Fibonacci and Lucas hybrid numbers [17]. Tasyurdu [25] and Yağmur [27] introduced the
Tribonacci and Tribonacci-Lucas hybrid numbers and expressed many various properties of
these hybrid numbers. Bilgici introduced unrestricted Gibonacci hybrid numbers by using
Gibonacci sequence is a generalization of Fibonacci sequence [1].

On the other hand, new generalizations of the hybrid numbers by using special polynomials
sequences such as Fibonacci, Lucas, Pell, Jacobsthal, Tribonacci and Narayana polynomials,
etc. have been introduced, called hybrinomial sequences. In [11,19,20], the authors introduced
the Pell hybrinomials, the Fibonacci and Lucas hybrinomials and generalized Fibonacci-Pell
hybrinomials, respectively. In particular, Kızılateş generalized their results and introduced the
Horadam hybrid polynomials called Horadam hybrinomials and some special cases of these
hybrinomials [8]. Taşyurdu and Polat defined Tribonacci and Tribonacci-Lucas hybrinomials
and derived these hybrinomials by the matrices [26]. In [10, 16], the authors introduced the
Narayana hybrinomials, the Jacobsthal representation hybrinomials, respectively.

The aim of this study is to introduce a new generalization of the Fibonacci type and Lucas
type hybrid numbers and polynomials called generalized Fibonacci hybrinomials. It is also
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to give special cases of generalized Fibonacci hybrinomials by generalizing all the results for
Fibonacci type hybrid polynomials and Lucas type hybrid polynomials.

2. The Generalized Fibonacci and Lucas Hybrinomials
In this section, we define the generalized Fibonacci hybrinomials, also called generalized
Fibonacci type hybrinomials and generalized Lucas type hybrinomials, and derive these
hybrinomials by the matrices. Moreover, we obtain Binet formulas and generating functions of
these hybrinomials.

Definition 1. The nth generalized Fibonacci hybrinomial, GnH(x) is defined by

GnH(x)=Gn(x)+ iGn+1(x)+εGn+2(x)+hGn+3(x), (2.1)

where Gn(x) is the nth generalized Fibonacci polynomial and hybrid units i,ε,h satisfy the
equations i2 =−1, ε2 = 0, h2 = 1, ih =−hi = ε+ i.

Definition 1 is the general model of the various generalizations of the hybrid numbers
introduced by using special polynomials sequences. In the following table we state special cases
of generalized Fibonacci hybrinomials according to initial conditions G0(x)= p0(x), G1(x)= p1(x)
and the related parameters d(x), g(x) in given eq. (1.1).

Table 2. Special cases of the sequences {GnH(x)}n≥0

Generalized Fibonacci hybrinomials GnH(x) GnH(x)(x : p0(x), p1(x);d(x), g(x))
Fibonacci hybrinomials [20] FnH(x) FnH(x)(x : 0,1; x,1)
Fibonacci hybrinomials with two variables fnH(x) fnH(x)(x : 0,1; x, y)
h(x)-Fibonacci hybrinomials Fh,nH(x) Fh,nH(x)(x : 0,1;h(x),1)
Lucas hybrinomials [20] LnH(x) LnH(x)(x : 2, x; x,1)
Lucas hybrinomials with two variables [18] lnH(x) lnH(x)(x : 2, x; x, y)
h(x)-Lucas hybrinomials Lh,nH(x) Lh,nH(x)(x : 2,h(x);h(x),1)
Pell hybrinomials [11] PnH(x) PnH(x)(x : 0,1;2x,1)
Pell-Lucas hybrinomials [11] QnH(x) QnH(x)(x : 2,2x;2x,1)
Pell-Lucas-prime hybrinomials Q′

nH(x) Q′
nH(x) (x : 1, x;2x,1)

Fermat hybrinomials ΦnH(x) ΦnH(x)(x : 0,1;3x,−2)
Fermat-Lucas hybrinomials ϑnH(x) ϑnH(x)(x : 2,3x;3x,−2)
Chebyshev first kind hybrinomials TnH(x) TnH(x)(x : 1, x;2x,−1)
Chebyshev second kind hybrinomials UnH(x) UnH(x)(x : 0,1;2x,−1)
Jacobsthal hybrinomials [10] JnH(x) JnH(x) (x : 0,1;1,2x)
Jacobsthal-Lucas hybrinomials [10] jnH(x) jnH(x) (x : 2,1;1,2x)
Morgan-Voyce first kind hybrinomials BnH(x) BnH(x) (x : 0,1; x+2,−1)
Morgan-Voyce second kind hybrinomials CnH(x) CnH(x)(x : 2, x+2; x+2,−1)
Vieta hybrinomials VnH(x) VnH(x)(x : 0,1; x,−1)
Vieta-Lucas hybrinomials vnH(x) vnH(x) (x : 2, x; x,−1)
Horadam hybrinomials [8] HnH(x) HnH(x)(x : a,bx; px, q)
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We present the generalized Fibonacci hybrinomials in two types as the generalized Fibonacci
type hybrinomials {GFnH(x)}n≥0 and the generalized Lucas type hybrinomials {GLnH(x)}n≥0.
Fibonacci type hybrinomials are Fibonacci hybrinomials FnH(x), Fibonacci hybrinomials with
two variables fnH(x), h(x)-Fibonacci hybrinomials Fh,nH(x), Pell hybrinomials PnH(x), Fermat
hybrinomials ΦnH(x), Chebyshev second kind hybrinomials UnH(x), Jacobsthal hybrinomials
JnH(x), and Morgan-Voyce first kind hybrinomials BnH(x), Vieta hybrinomials VnH(x). Lucas
type hybrinomials are Lucas hybrinomials LnH(x), Lucas hybrinomials with two variables
lnH(x), h(x)-Lucas hybrinomials Lh,nH(x), Pell-Lucas hybrinomials QnH(x), Pell-Lucas-prime
hybrinomials Q

′
nH(x), Fermat-Lucas hybrinomials ϑnH(x), Chebyshev first kind hybrinomials

TnH(x), Jacobsthal-Lucas hybrinomials jnH(x) and Morgan-Voyce second type hybrinomials
CnH(x), Vieta-Lucas hybrinomials vnH(x). Since the all results given throughout the study are
provided for all generalized Fibonacci type hybrinomial sequences and generalized Lucas type
hybrinomial sequences, the values given in Table 2 can be used in the theorem or corollary of
any hybrinomial sequences which are the generalized Fibonacci type hybrinomial sequences or
generalized Lucas type hybrinomial sequences.

Note that if we take p0(x), p1(x), d(x) and g(x) as the values in Table 2, Definition 1 gives
the recurrence relations for the generalized Fibonacci type hybrinomial sequences and the
generalized Lucas type hybrinomial sequences.

Definition 2. The nth generalized Fibonacci type hybrinomial, GFnH(x) and generalized Lucas
type hybrinomial, GLnH(x) are defined by

GFnH(x)=Fn(x)+ iFn+1(x)+εFn+2(x)+hFn+3(x), (2.2)

GLnH(x)=Ln(x)+ iLn+1(x)+εLn+2(x)+hLn+3(x), (2.3)

where Fn(x) and Ln(x) are the nth generalized Fibonacci type polynomial and the nth
generalized Lucas type polynomial, respectively. Here hybrid units i, ε, h satisfy the equations
i2 =−1, ε2 = 0, h2 = 1, ih =−hi = ε+ i.

Using eq. (2.1) we can give the following recurrence relations of the generalized Fibonacci
hybrinomial sequences, {GnH(x)}n≥0 which are the generalized Fibonacci type hybrinomial
sequences, {GFnH(x)}n≥0 and generalized Lucas type hybrinomial sequences {GLnH(x)}n≥0.

Theorem 1. For n ≥ 2, the following recurrence relation for the generalized Fibonacci
hybrinomial sequences, {GnH(x)}n≥0 holds

GnH(x)= d(x)Gn−1H(x)+ g(x)Gn−2H(x) (2.4)

with

G0H(x)= p0(x)+ ip1(x)+ε(d(x)p1(x)+ g(x)p0(x))+h(d2(x)p1(x)+d(x)g(x)p0(x)+ g(x)p1(x)),

G1H(x)= p1(x)+ i(d(x)p1(x)+ g(x)p0(x))+ε(d2(x)p1(x)+d(x)g(x)p0(x)+ g(x)p1(x))

+h(d3(x)p1(x)+d2(x)g(x)p0(x)+2d(x)g(x)p1(x)+ g2(x)p0(x)).

Proof. Using the eqs. (1.1) and (2.1), we obtain

d(x)Gn−1H(x)+ g(x)Gn−2(x)H(x)
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= d(x)(Gn−1(x)+iGn(x)+εGn+1(x)+hGn+2(x))+g(x)(Gn−2(x)+iGn−1(x)+εGn(x)+hGn+1(x))

= d(x)Gn−1(x)+ g(x)Gn−2(x)+ i(d(x)Gn(x)+ g(x)Gn−1(x))

= ε(d(x)Gn+1(x)+ g(x)Gn(x))+h(d(x)Gn+2(x)+ g(x)Gn+1(x))

=Gn(x)+ iGn+1(x)+εGn+2(x)+hGn+3(x)

=GnH(x)

which ends the proof.

Note that if we take p0(x), p1(x), d(x) and g(x) as the values in Table 2, Theorem 1 gives
the recurrence relations for the generalized Fibonacci type hybrinomial sequences and the
generalized Lucas type hybrinomial sequences.

Corollary 1. For n ≥ 2, the following recurrence relations for the generalized Fibonacci type
hybrinomial sequences and generalized Lucas type hybrinomial sequences hold

GFnH(x)= d(x)GFn−1H(x)+ g(x)GFn−2(x)H(x),

GLnH(x)= d(x)GLn−1H(x)+ g(x)GLn−2(x)H(x)

with

GF0(x)=i+εd(x)+h(d2(x)+ g(x)),

GF1(x)=1+ id(x)+ε(d2(x)+ g(x))+h(d3(x)+2d(x)g(x)),

where d(x) and g(x) are fixed non-zero polynomials in Q[x] and

GL0(x)= p0 + ip1(x)+ε(d(x)p1(x)+ g(x)p0)+h(d2(x)p1(x)+d(x)g(x)p0 + g(x)p1(x)),
GL1H(x)= p1(x)+ i(d(x)p1(x)+ g(x)p0)+ε(d2(x)p1(x)+d(x)g(x)p0 + g(x)p1(x))

+h(d3(x)p1(x)+d2(x)g(x)p0 +2d(x)g(x)p1(x)+ g2(x)p0),

where |p0| = 1 or 2 and p1(x), d(x) = αp1(x), and g(x) are fixed non-zero polynomials in Q[x]
with α an integer of the 2/p0, respectively.

Now we derive the matrix representations of the generalized Fibonacci hybrinomials with
next theorem

Theorem 2. Let n ≥ 0 be an integer. Then[
Gn+2H(x) Gn+1H(x)
Gn+1H(x) GnH(x)

]
=

[
G2H(x) G1H(x)
G1H(x) G0H(x)

][
d(x) 1
g(x) 0

]n

where GnH(x) is the nth generalized Fibonacci hybrinomial.

Proof. By using induction on n, if n = 0, then the result is obvious. Now assume that for any

n ≥ 0 holds[
Gn+2H(x) Gn+1H(x)
Gn+1H(x) GnH(x)

]
=

[
G2H(x) G1H(x)
G1H(x) G0H(x)

][
d(x) 1
g(x) 0

]n

.

Then, we need to show that above equality holds for n+1. That is,[
Gn+3H(x) Gn+2H(x)
Gn+2H(x) Gn+1H(x)

]
=

[
G2H(x) G1H(x)
G1H(x) G0H(x)

][
d(x) 1
g(x) 0

]n+1

.
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Then by induction hypothesis we obtain[
G2H(x) G1H(x)
G1H(x) G0H(x)

][
d(x) 1
g(x) 0

]n+1

=
[
G2H(x) G1H(x)
G1H(x) G0H(x)

][
d(x) 1
g(x) 0

]n [
d(x) 1
g(x) 0

]
=

[
Gn+2H(x) Gn+1H(x)
Gn+1H(x) GnH(x)

][
d(x) 1
g(x) 0

]
=

[
d(x)Gn+2H(x)+ g(x)Gn+1H(x) Gn+2H(x)
d(x)Gn+1H(x)+ g(x)GnH(x) Gn+1H(x)

]
=

[
Gn+3H(x) Gn+2H(x)
Gn+2H(x) Gn+1H(x)

]
,

which ends the proof.

Note that if we take p0(x), p1(x),d(x) and g(x) as the values in Table 2, Theorem 2 gives

the matrix representations for the generalized Fibonacci type hybrinomial sequences and the

generalized Lucas type hybrinomial sequences.

Corollary 2. Let n ≥ 0 be an integer. Then[
GFn+2H(x) GFn+1H(x)
GFn+1H(x) GFnH(x)

]
=

[
GF2H(x) GF1H(x)
GF1H(x) GF0H(x)

][
d(x) 1
g(x) 0

]n

,[
GLn+2H(x) GLn+1H(x)
GLn+1H(x) GLnH(x)

]
=

[
GL2H(x) GL1H(x)
GL1H(x) GL0H(x)

][
d(x) 1
g(x) 0

]n

,

where GFnH(x) and GLnH(x) are the nth generalized Fibonacci type hybrinomial and the nth
generalized Lucas type hybrinomial, respectively.

Binet formulas for the generalized Fibonacci hybrinomial sequences are given in the next

theorem.

Theorem 3. For n ≥ 0, the Binet formulas for the generalized Fibonacci hybrinomial sequences
are given by

GnH(x)= p1(x)(σ̂(x)σn(x)− ρ̂(x)ρn(x))+ p0(x)g(x)(σ̂(x)σn−1(x)− ρ̂(x)ρn−1(x))
σ(x)−ρ(x)

,

respectively, where σ̂(x)= 1+ iσ(x)+εσ2(x)+hσ3(x), ρ̂(x)= 1+ iρ(x)+ερ2(x)+hρ3 and σ(x) and
ρ(x) are the roots of the quadratic equation z2 −d(x)z− g(x) = 0.

Proof. By considering the Binet formula for the nth generalized Fibonacci polynomial given in

eq. (1.5) and eq. (2.1), we have

GnH(x)=Gn(x)+ iGn+1(x)+εGn+2(x)+hGn+3(x)

=
(

p1(x)(σn(x)−ρn(x))+ p0(x)g(x)(σn−1(x)−ρn−1(x))
σ(x)−ρ(x)

)
+ i

(
p1(x)(σn+1(x)−ρn+1(x))+ p0(x)g(x)(σn(x)−ρn(x))

σ(x)−ρ(x)

)
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+ε
(

p1(x)(σn+2(x)−ρn+2(x))+ p0(x)g(x)(σn+1(x)−ρn+1(x))
σ(x)−ρ(x)

)
+h

(
p1(x)(σn+3(x)−ρn+3(x))+ p0(x)g(x)(σn+2(x)−ρn+2(x))

σ(x)−ρ(x)

)
= p1(x)(1+ iσ(x)+εσ2(x)+hσ3(x))σn(x)

σ(x)−ρ(x)
− p1(x)(1+ iρ(x)+ερ2(x)+hρ3(x))ρn(x)

σ(x)−ρ(x)

+ p0(x)g(x)(1+ iσ(x)+εσ2(x)+hσ3(x))σn−1(x)
σ(x)−ρ(x)

− p0(x)g(x)(1+ iρ(x)+ερ2(x)+hρ3(x))ρn−1(x)
σ(x)−ρ(x)

= p1(x)(σ̂(x)σn(x)− ρ̂(x)ρn(x))+ p0(x)g(x)(σ̂(x)σn−1(x)− ρ̂(x)ρn−1(x))
σ(x)−ρ(x)

,

where

σ̂(x)= 1+ iσ(x)+εσ2(x)+hσ3(x),

ρ̂(x)= 1+ iρ(x)+ερ2(x)+hρ3(x),

which ends the proof.

Note that if we take p0(x), p1(x), d(x) and g(x) as the values in Table 2, Theorem 3 gives

the Binet formulas for the generalized Fibonacci type hybrinomials and the generalized Lucas

type hybrinomials.

Corollary 3. For n ≥ 0, the Binet formulas for the generalized Fibonacci type hybrinomials and
generalized Lucas type hybrinomials are given by

GFnH(x)= σ̂(x)σn(x)− ρ̂(x)ρn(x)
σ(x)−ρ(x)

, (2.5)

GLnH(x)= σ̂(x)σn(x)+ ρ̂(x)ρn(x)
α

, (2.6)

respectively, where σ̂(x)= 1+ iσ(x)+εσ2(x)+hσ3(x), ρ̂(x)= 1+ iρ(x)+ερ2(x)+hρ3 and σ(x) and
ρ(x) are the roots of the quadratic equation z2 −d(x)z− g(x)= 0.

Now, we give the generating functions for the generalized Fibonacci hybrinomial sequences

the with following theorem.

Theorem 4. The generating functions for the generalized Fibonacci hybrinomial sequences are

g(t)=
∞∑

n=0
GnH(x)tn =G0H(x)+G1H(x)t−d(x)G0H(x)t

1−d(x)t− g(x)t2 .

Proof. Let g(t) = ∑∞
n=0 GnH(x)tn be the generating functions for the generalized Fibonacci

hybrinomial sequences. Then

g(t)=
∞∑

n=0
GnH(x)tn
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=G0H(x)+G1H(x)t+
∞∑

n=2
GnH(x)tn

=G0H(x)+G1H(x)t+
∞∑

n=2
(d(x)Gn−1H(x)+ g(x)Gn−2H(x))tn

=G0H(x)+G1H(x)t+d(x)t
∞∑

n=0
GnH(x)tn −d(x)G0H(x)t+ g(x)t2

∞∑
n=0

Gn(x)Htn

=G0H(x)+G1H(x)t+d(x)tg(t)−d(x)G0H(x)t+ g(x)t2 g(t)

and we obtain that

(1−d(x)t− g(x)t2)g(t)=G0H(x)+G1H(x)t−d(x)G0H(x)t.

So the generating functions for the generalized Fibonacci hybrinomial sequences are

g(t)= G0H(x)+G1H(x)t−d(x)G0H(x)t
1−d(x)t− g(x)t2 .

Note that if we take p0(x), p1(x), d(x) and g(x) as the values in Table 2, Theorem 4 gives

the generating functions for the generalized Fibonacci type hybrinomials and the generalized

Lucas type hybrinomials.

Corollary 4. The generating functions for the generalized Fibonacci type hybrinomials and
generalized Lucas type hybrinomials are given by

f (t)=
∞∑

n=0
GFnH(x)tn =GF0H(x)+GF1H(x)t−d(x)GF0H(x)t

1−d(x)t− g(x)t2 ,

l(t)=
∞∑

n=0
GLnH(x)tn =GL0H(x)+GL1H(x)t−d(x)GL0H(x)t

1−d(x)t− g(x)t2 ,

respectively.

3. Identities of the Generalized Fibonacci and Lucas Hybrinomials

In this section, we present interesting properties such as Catalan’s identity, Cassini’s identity,

d’Ocagne’s identity, Honsberger’s identity for the generalized Fibonacci type hybrinomials and

generalized Lucas type hybrinomials. Also, some relations between the generalized Fibonacci

hybrinomials are given.

Now, we give the Catalan’s identity for the generalized Fibonacci type hybrinomials and

generalized Lucas type hybrinomials. Note that the Cassini’s identity is a special case of the

Catalan’s identity and we only prove the Catalan’s identity.

Theorem 5 (Catalan’s Identity). For 0≤ r ≤ n, we have

(i) GFn+rH(x)GFn−rH(x)− (GFnH(x))2 = (−g(x))n[σ̂(x)ρ̂(x)(1−σr(x)ρ−r(x))+ρ̂(x)σ̂(x)(1−ρr(x)σ−r(x))]
(σ(x)−ρ(x))2

,

(ii) GLn+rH(x)GLn−rH(x)− (GLnH(x))2 = (−g(x))n[σ̂(x)ρ̂(x)(σr(x)ρ−r(x)−1)+ρ̂(x)σ̂(x)(ρr(x)σ−r(x)−1)]
α2 .
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Proof. (i) By using the Binet formulas of the generalized Fibonacci type hybrinomials given in

eq. (2.5), we have

GFn+rH(x)GFn−rH(x)− (GFnH(x))2

= (σ̂(x)σn+r(x)− ρ̂(x)ρn+r(x))(σ̂(x)σn−r(x)− ρ̂(x)ρn−r(x))
(σ(x)−ρ(x))2

− (σ̂(x)σn(x)− ρ̂(x)ρn(x))(σ̂(x)σn(x)− ρ̂(x)ρn(x))
(σ(x)−ρ(x))2

= σ̂(x)ρ̂(x)σn(x)ρn(x)(1−σr(x)ρ−r(x))+ ρ̂(x)σ̂(x)ρn(x)σn(x)(1−ρr(x)σ−r(x))
(σ(x)−ρ(x))2

= (−g(x))n[σ̂(x)ρ̂(x)(1−σr(x)ρ−r(x))+ ρ̂(x)σ̂(x)(1−ρr(x)σ−r(x))]
(σ(x)−ρ(x))2 .

(ii) As the way used in (i), we get Catalan’s identity for the generalized Lucas type hybrinomials

by using the Binet formulas of the generalized Lucas type hybrinomials given in eq. (2.6).

Note that if we take r = 1 in Theorem 5, we obtain the Cassini’s identity for the generalized

Fibonacci type hybrinomials and generalized Lucas type hybrinomials. So we can write following

corollary.

Corollary 5 (Cassini’s Identity). For 1≤ n, we have

(i) GFn+1H(x)GFn−1H(x)− (GFnH(x))2 = (−g(x))n[σ̂(x)ρ̂(x)(1−σ(x)ρ−1(x))+ρ̂(x)σ̂(x)(1−ρ(x)σ−1(x))]
(σ(x)−ρ(x))2

,

(ii) GLn+1H(x)GLn−1H(x)− (GLnH(x))2 = (−g(x))n[σ̂(x)ρ̂(x)(σ(x)ρ−1(x)−1)+ρ̂(x)ρ̂(x)(ρ(x)σ−1(x)−1)]
α2 .

Theorem 6 (Honsberger’s Identity). For n,m ≥ 0, we have

(i) GFnH(x)GFmH(x)+GFn+1H(x)GFm+1H(x)

= σ̂2(x)σn+m(x)(1+σ2(x))+(g(x)−1)(σ̂(x)ρ̂(x)σn(x)ρm(x)+ρ̂(x)σ̂(x)ρn(x)σm(x))+(ρ̂2(x)ρn+m(1+ρ2(x))
(σ(x)−ρ(x))2

,

(ii) GLnH(x)GLmH(x)+GLn+1H(x)GLm+1H(x)

= σ̂2(x)σn+m(x)(1+σ2(x))+(1−g(x))(σ̂(x)ρ̂(x)σn(x)ρm(x)+ρ̂(x)σ̂(x)ρn(x)σm(x))+(ρ̂2(x)ρn+m(1+ρ2(x))
α2 .

Proof. (i) By using the Binet formulas of the generalized Fibonacci type hybrinomials given in

eq. (2.5), we have

GFnH(x)GFmH(x)+GFn+1H(x)GFm+1H(x)

= (σ̂(x)σn(x)− ρ̂(x)ρn(x))(σ̂(x)σm(x)− ρ̂(x)ρm(x))
(σ(x)−ρ(x))2

+ (σ̂(x)σn+1(x)− ρ̂(x)ρn+1(x))(σ̂(x)σm+1(x)− ρ̂(x)ρm+1(x))
(σ(x)−ρ(x))2

= σ̂2(x)σn+m(x)(1+σ2(x))− σ̂(x)ρ̂(x)σn(x)ρm(x)(1+σ(x)ρ(x))
(σ(x)−ρ(x))2
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− ρ̂(x)σ̂(x)ρn(x)σm(x)(1+ρ(x)σ(x))−ρ2(x)ρn+m(1+ρ2(x))
(σ(x)−ρ(x))2

= σ̂2(x)σn+m(x)(1+σ2(x))+ (g(x)−1)(σ̂(x)ρ̂(x)σn(x)ρm(x)+ ρ̂(x)σ̂(x)ρn(x)σm(x))
(σ(x)−ρ(x))2

+ (ρ̂2(x)ρn+m(1+ρ2(x))
(σ(x)−ρ(x))2 .

(ii) As the way used in (i), we get Honsberger’s identity for the generalized Lucas type

hybrinomials by using the Binet formulas of the generalized Lucas type hybrinomials given in

eq. (2.6).

Theorem 7 (d’Ocagne’s Identity). For n ≤ m, we have

(i) GFmH(x)GFn+1H(x)−GFm+1H(x)GFnH(x)= (−g(x))n
[
σ̂(x)ρ̂(x)σm−n(x)−ρ̂(x)â(x)ρm−n(x)

σ(x)−ρ(x)

]
,

(ii) GLmH(x)GLn+1H(x)−GLm+1H(x)GLnH(x)

= (−g(x))n(σ(x)−ρ(x))
[−σ̂(x)ρ̂(x)σm−n(x)+ρ̂(x)σ̂(x)ρm−n(x)

α2

]
.

Proof. (i) By using the Binet formulas of the generalized Fibonacci type hybrinomials given in

eq. (2.5), we have

GFmH(x)GFn+1H(x)−GFm+1H(x)GFnH(x)

= (σ̂(x)σm(x)− ρ̂(x)ρm(x))(σ̂(x)σn+1(x)− ρ̂(x)ρn+1(x))
(σ(x)−ρ(x))2

− (σ̂(x)σm+1(x)− ρ̂(x)ρm+1(x))(σ̂(x)σn(x)− ρ̂(x)ρn(x))
(σ(x)−ρ(x))2

= σ̂(x)ρ̂(x)σm(x)ρn(x)(−ρ(x)+σ(x))− ρ̂(x)σ̂(x)ρm(x)σn(x)(σ(x)−ρ(x))
(σ(x)−ρ(x))2

= σ̂(x)ρ̂(x)σm(x)ρn(x)− ρ̂(x)σ̂(x)ρm(x)σn(x)
σ(x)−b(x)

= (−g(x))n
[
σ̂(x)ρ̂(x)σm−n(x)− ρ̂(x)σ̂(x)ρm−n(x)

σ(x)−ρ(x)

]
.

(ii) As the way used in (i), we get d’Ocagne’s identity for the generalized Lucas type hybrinomials

by using the Binet formulas of the generalized Lucas type hybrinomials given in eq. (2.6).

Other relations for the sequences {GFnH(x)}n≥0 and {GLnH(x)}n≥0 are given by the following

theorem.

Theorem 8. Let {GFnH(x)}n≥0 and {GLnH(x)}n≥0 be equivalent generalized Fibonacci
hybrinomial sequences. If m and n are positive integers, then

(i) g(x)GFn−1H(x)+GFn+1H(x)=αGLnH(x),

(ii) (σ(x)−ρ(x))2GF2
nH(x)+σ2GL2

nH(x)= 2(σ̂2(x)σ2n(x)+ ρ̂2(x)ρ2n(x)),

(iii) (σ(x)−ρ(x))2GF2
nH(x)−σ2(x)GL2

nH(x)= 2(−g(x))n(−σ̂(x)ρ̂(x)− ρ̂(x)σ̂(x)),
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(iv) GFn+2H(x)+ g2GFn−2H(x)= (σ2(x)+ρ2(x))GFnH(x),

(v) α(GLmH(x)GFnH(x)+GFmH(x)GLnH(x))= 2σ̂(x)2σn+m(x)−2ρ̂2(x)ρn+m(x)
σ(x)−ρ(x) .

Proof. By using the Binet formulas for the Fibonacci type hybrinomials and Lucas type

hybrinomials given in eqs. (2.5) and (2.6), we get

(i) g(x)GFn−1H(x)+GFn+1H(x)

= g(x)
(

â(x)σn−1(x)− ρ̂ (x)ρn−1(x)
σ(x)−ρ(x)

)
+

(
σ̂(x)σn+1(x)− ρ̂(x) ρn+1(x)

σ(x)−ρ(x)

)
= σ̂(x)σn(x)(g(x)σ−1(x)+σ(x))+ ρ̂(x)ρn(x)(−g(x)ρ−1(x)−ρ(x))

σ(x)−ρ(x)
= σ̂(x)σn(x)+ ρ̂(x)ρn(x)

=αGLnH(x),

(ii) (σ(x)−ρ(x))2GF2
nH(x)+σ2GL2

nH(x)

= (σ(x)−ρ(x))2
(
σ̂(x)σn(x)− ρ̂ (x)ρn(x)

σ(x)−ρ(x)

)2
+α2

(
σ̂(x)σn(x)+ ρ̂(x)ρn(x)

α

)2

= (σ(x)−ρ(x))2
(
σ̂2(x)σ2n(x)− σ̂(x)ρ̂(x)σn(x)ρn(x)− ρ̂(x)σ̂(x)ρn(x)σn(x)+ ρ̂2(x)ρ2n(x)

(σ(x)−ρ(x))2

)
+σ2

(
σ̂2(x)σ2n(x)+ σ̂(x)ρ̂(x)σn(x)ρn(x)+ ρ̂(x)σ̂(x)ρn(x)σn(x)+ ρ̂2(x)ρ2n(x)

α2

)
= 2(σ̂2(x)σ2n(x)+ ρ̂2(x)ρ2n(x)),

(iii) (σ(x)−ρ(x))2GF2
nH(x)−σ2GL2

nH(x)

= (σ(x)−ρ(x))2
(
σ̂(x)σn(x)− ρ̂(x)ρn(x)

σ(x)−ρ(x)

)2
−σ2

(
σ̂(x)σn(x)+ ρ̂(x)ρn(x)

α

)2

= (σ(x)−ρ(x))2

(
σ̂2(x)σ2n(x)− σ̂(x)ρ̂(x)σn(x)ρn(x)− ρ̂(x)σ̂(x)ρn(x)σn(x)+ ρ̂2(x)ρ2n(x)(

σ(x)−ρ(x)
)2

)

−σ2
(
σ̂2(x)σ2n(x)+ σ̂(x)ρ̂(x)σn(x)ρn(x)+ ρ̂(x)σ̂(x)ρn(x)σn(x)+ ρ̂2(x)ρ2n(x)

α2

)
= 2(−g(x))n(−σ̂(x)ρ̂(x)− ρ̂(x)σ̂(x)),

(iv) GFn+2H(x)+ g2GFn−2H(x)

= (σ̂(x)σn+2(x)− ρ̂(x)ρn+2(x))+ g2(x)(σ̂ (x)σn−2(x)− ρ̂(x)ρn−2(x))
σ(x)−ρ(x)

= σ̂(x)σn(x)(σ2(x)+ g2σ−2(x))− ρ̂(x)ρn(x)(ρ2(x)+ g2ρ−2(x))
σ(x)−ρ(x)

= (σ̂(x)σn(x)− ρ̂(x)ρn(x))(σ2(x)+ρ2(x))
σ(x)−ρ(x)

= (σ2(x)+ρ2(x))GFnH(x),
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(v) α(GLmH(x)GFnH(x)+GFmH(x)GLnH(x))

=α
[(
σ̂(x)σm(x)+ ρ̂(x)ρm(x)

α

)(
σ̂(x)σn(x)− ρ̂(x)ρn(x)

σ(x)−ρ(x)

)
+

(
σ̂(x)σm(x)− ρ̂(x)ρm(x)

σ(x)−ρ(x)

)(
σ̂(x) σn(x)+ ρ̂(x)ρn(x)

α

)]
= 2σ̂2(x)σn+m(x)−2ρ̂2(x)ρn+m(x)

σ(x)−ρ(x)
,

where σ(x)ρ(x)=−g(x). So proof is completed.
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