Communications in Mathematics and Applications

Volume 2 (2011), Number 1, pp. 21–28

© RGN Publications

Existence of Weak Solutions for A Class of Nonuniformly Nonlinear Elliptic Equations of *p*-Laplacian Type

G.A. Afrouzi, Z. Naghizadeh, F. Mirzadeh, and M. Amirian

Abstract. The goal of this paper is to study the existence of non-trivial weak solutions for the nonuniformly nonlinear elliptic equation in an unbounded domain. The solution will be obtained in a subspace of the Sobolev space and the proofs rely essentially on a variation of the mountain pass theorem.

1. Introduction

Let Ω be an unbounded domain in R^N ($N \ge 3$) with smooth boundary $\partial \Omega$. We study the existence of non-trivial weak solutions of the following Dirichlet problem.

$$\begin{cases} -\operatorname{div}(h(x)|\nabla u|^{p-2}\nabla u) + q(x) \mid u\mid^{p-2} u = f(x,u) & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \\ u(x) \to 0 & \text{as } |x| \to +\infty \end{cases}$$
 (1.1)

where the functions h and q satisfy the hypotheses $h(x) \in L^1_{loc}(\Omega)$, $h(x) \ge 1$, a.e. $x \in \Omega$ and $q(x) \in C(\Omega)$, there exists $q_0 > 0$ such that

$$q(x) \ge q_0 > 0$$
, a.e. $x \in \Omega$, $q(x) \to +\infty$ as $|x| \to \infty$. (1.2)

We remark that in the case when h(x) = 1 in Ω and p = 2, problem (1.1) has been studied in the article [5] and if Ω is a bounded domain it has been studied in the article [6]. We reduce problem (1.1) to a uniform one by using an appropriate weighted Sobolev space. Then applying a variation of the mountain pass theorem in the article [3], [4] we prove that problem (1.1) admits a non-trivial weak solution in a subspace of the Sobolev space $W_0^{1,p}(\Omega)$.

In order to state our main theorem, let us introduce the following hypotheses:

$$(F_1): f(x,z) \in C^1(\Omega \times R, R), f(x,0) = 0, \text{ a.e. } x \in \Omega.$$

(
$$F_2$$
): There exists a function $\tau(x) \ge 0$, a.e. $x \in \Omega$, $\tau(x) \in L^{p_0}(\Omega) \cap L^{\infty}(\Omega)$, where $\alpha \in \left(1, \frac{N+p}{N-p}\right)$, $p_0 = \frac{pN}{pN-(p+1)(N-p)}$ such that $|f_z'(x,z)| \le \tau(x)|z|^{\alpha-1}$ a.e. $x \in \Omega$, $\forall z \in R$.

²⁰¹⁰ Mathematics Subject Classification. 35J60, 35B30, 35B40.

(F_3): There exists a constant $\mu > p$ such that

$$0 < \mu F(x, w) \le z \cdot f(x, z)$$

for all
$$x \in \Omega$$
, $z \in R \setminus \{0\}$, where $F(x,z) = \int_0^z f(x,s)ds$.

For example let $f(x,u) = u^3$, $\mu = 4$, and p = 3. It can be shown that the function f satisfy condition (F_3) . We define the norm of $u \in W_0^{1,p}(\Omega)$ by

$$||u||_{W_0^{1,p}(\Omega)} = \left(\int_{\Omega} |\nabla u|^p + |u|^p dx\right)^{\frac{1}{p}}$$

and consider the following subspace

$$E = \left\{ u \in W_0^{1,p}((\Omega) : \int_{\Omega} (|\nabla u|^p + q(x)|u|^p) dx \right)^{\frac{1}{p}} < +\infty \right\}$$

then E is a Banach space with the norm

$$||u||_E^p = \int_{\Omega} (|\nabla u|^p + q(x)|u|^p) dx, \quad u \in W_0^{1,p}(\Omega).$$

Furthermore, we have

$$||u||_{E} \ge m_0^{\frac{1}{2}} ||u||_{W_0^{1,p}(\Omega)} \quad \forall \ u \in E$$

where $m_0 = \min(1, q_0)$ and the continuous embeddings

$$E \hookrightarrow W_0^{1,p}(\Omega) \hookrightarrow L^q(\Omega), \quad p \le q \le p^* = \frac{pN}{N-p}$$

hold true(see [1] or [5]).

Moreover, the embedding $E \hookrightarrow L^p(\Omega)$ is compact (see [2]).

1.1

We now introduce the space

$$H = \left\{ u \in E : \left(\int_{\Omega} (h(x)|\nabla u|^p + q(x)|u|^p) dx \right)^{\frac{1}{p}} < \infty \right\}$$

endowed with the norm

$$||u||_H^p = \int_{\Omega} (h(x)|\nabla u|^p + q(x)|u|^p)dx.$$

As [4] it can be easily shown that H is a Banach space with the above norm.

Remark 1.1. (i) Since $h(x) \ge 1$, a.e. $x \in \Omega$ we have

$$||u||_H \ge ||u||_E, \quad \forall \ u \in H$$

(ii)
$$\forall v \in C_0^{\infty}(\Omega), \int_{\Omega} (h(x)|\nabla v|^2 + q(x)|v|^2) dx < +\infty.$$

Hence $C_0^{\infty}(\Omega) \subset H.$

Definition 1.2. We say that a function $u \in H$ is a weak solution of (1.1) if

$$\int_{\Omega} (h(x)|\nabla u|^{p-2}\nabla u\nabla v + q(x)|u|^{p-2}uv)dx - \int_{\Omega} f(x,u)vdx = 0$$

2. Main result

2.1

Our main result is stated as follows:

Theorem 2.1. Assuming (1.2) and (F_1) - (F_3) are satisfied, then problem (1.1) has at least one nontrivial weak solution in H.

It is clear that equation (1.1) has a variational structure. Let $J: H \to R$ defined by

$$J(u) = \frac{1}{p} \int_{\Omega} (h(x)|\nabla u|^p + q(x)|u|^p) dx - \int_{\Omega} F(x,u) dx$$
$$= T(u) - p(u) \quad \text{for } u \in H$$
 (2.1)

where

$$T(u) = \frac{1}{p} \int_{\Omega} (h(x)|\nabla u|^p + q(x)|u|^p) dx$$
 (2.2)

$$P(u) = \int_{\Omega} F(x, u) dx. \tag{2.3}$$

Definition 2.2. Let J be a functional from a Banach space Y into R. We say that J is weakly continuously differentiable on Y if and only if the following conditions are satisfied:

- (i) *J* is continuous on *Y*.
- (ii) For any $u \in Y$, there exists a linear map J'(u) from Y into R such that

$$\lim_{t\to 0} \frac{J(u+tv)-J(u)}{t} = \langle J'(u),v\rangle \quad \forall \ v\in Y.$$

(iii) For any $v \in Y$, the map $u \to \langle J'(u), v \rangle$ is continuous on Y.

Proposition 2.3. Under the assumptions of Theorem 2.1, the functional J(u) is weakly continuously differentiable on H and

$$\langle J'(u), v \rangle = \int_{\Omega} (h(x)|\nabla u|^{p-2}\nabla u \nabla v + q(x)|u|^{p-2}uv)dx - \int_{\Omega} f(x, u)vdx$$

for all $u, v \in H$.

Proof. Following exactly the same procedures as in the proof of Proposition 2.2 in article $\lceil 4 \rceil$.

Proposition 2.4 ([4]). Suppose that $\{u_m\}$ is a sequence weakly converging to u in E. Then we have:

(i)
$$\lim_{m \to +\infty} P(u_m) = P(u)$$

(ii)
$$T(u) \le \liminf_{m \to +\infty} T(u_m)$$

Proposition 2.5 ([4]). The functional J(u), $u \in H$ given by (2.1) satisfies the Palais-Smale condition.

Proof. Let $\{u_m\} \subset H$ be a Palais-Smale sequence, i.e.

$$\lim_{m \to +\infty} J(u_m) = c, \quad \lim_{m \to +\infty} ||J'(u_m)||_{H^*} = 0.$$

First we should prove that $\{u_m\}$ is bounded in H. We suppose by contradiction that $\{u_m\}$ is not bounded in H. Then there exists a subsequence $\{u_{m_i}\}$ of $\{u_m\}$ such that

$$||u_{m_i}||_H \to \infty$$
 as $j \to \infty$.

Observe further that

$$J(u_{m_{j}}) - \frac{1}{\mu} \langle J'(u_{m_{j}}), u_{m_{j}} \rangle = T(u_{m_{j}}) - \frac{1}{\mu} \langle T'(u_{m_{j}}), u_{m_{j}} \rangle + \frac{1}{\mu} \langle P'(u_{m_{j}}), u_{m_{j}} \rangle - P(u_{m_{j}})$$

$$\geq \left(\frac{1}{p} - \frac{1}{\mu} \right) ||u_{m_{j}}||_{H}^{p}$$

yields

$$J(u_{m_{j}}) \geq \left(\frac{1}{p} - \frac{1}{\mu}\right) \|u_{m_{j}}\|_{H}^{p} + \frac{1}{\mu} \langle J'(u_{m_{j}}), u_{m_{j}} \rangle$$

$$\geq \left(\frac{1}{p} - \frac{1}{\mu}\right) \|u_{m_{j}}\|_{H}^{p} - \frac{1}{\mu} \|J'(u_{m_{j}})\|_{H^{*}} \|u_{m_{j}}\|_{H}$$

$$\geq \|u_{m_{j}}\|_{H} \left(\gamma_{0} \|u_{m_{j}}\|_{H}^{p-1} - \frac{1}{\mu} \|J'(u_{m_{j}})\|_{H^{*}}\right), \tag{2.4}$$

where $\gamma_0 = \left(\frac{1}{p} - \frac{1}{\mu}\right) > 0$.

From (2.4) letting $j \to \infty$ since $||u_{m_j}||_H \to \infty$ and $||J'(u_{m_j})||_{H^*} \to 0$ we deduce $J(u_{m_i}) \to \infty$ which yields a contradiction. Hence, $\{||u_m||_H\}$ is bounded.

Since $\|u_m\|_E \le \|u_m\|_H$, $\{u_m\}$ is also bounded in E. Therefore, there exists a subsequence $\{u_{m_k}\}$ of $\{u_m\}$ converging weakly to u in E. By Proposition 2.4 we have

$$T(u) \leq \liminf_{k \to \infty} T(u_{m_k}) = \lim_{k \to \infty} [P(u_{m_k}) + J(u_{m_k})] = P(u) + c < \infty.$$

Therefore $u \in H$.

Furthermore, since the embedding $E \hookrightarrow L^{p^*}(\Omega)$ is continuous, $\{u_{m_k}\}$ is weakly convergent to u in $L^{p^*}(\Omega)$. Then it is clear that the sequence $\{|u_{m_k}|^{p-1}u_{m_k}\}$ converges weakly to $|u|^{p-1}u$ in $L^{\frac{p^*}{p}}(\Omega)$ by

$$\langle k(u), w \rangle = \int \tau(x) uw dx, \quad w \in L^{\frac{p^*}{p}}(\Omega).$$

We remark k(u) is linear and continuous provided that $\tau(x) \in L^{p_0}(\Omega)$, $u \in L^{p^*}(\Omega)$, $w \in L^{\frac{p^*}{p}}(\Omega)$ and $\frac{1}{p_0} + \frac{1}{p^*} + \frac{p}{p^*} = 1$.

By (F_1) and (F_2) we obtain

$$\lim_{k \to \infty} \int_{\Omega} f(x, u_{m_k})(u_{m_k} - u) dx = 0$$

i.e.

$$\lim_{k \to \infty} \langle P'(u_{m_k}), u_{m_k} - u \rangle = 0. \tag{2.5}$$

It follows from (2.5) that

$$\lim_{k\to\infty}\langle T'(u_{m_k}),u_{m_k}-u\rangle=\lim_{k\to\infty}\langle J'(u_{m_k}),u_{m_k}-u\rangle+\lim_{k\to\infty}\langle P'(u_{m_k}),u_{m_k}-u\rangle=0.$$

Moreover, since T is convex the following inequality holds true

$$T(u) - T(u_{m_k}) \ge \langle T'(u_{m_k}), u - u_{m_k} \rangle.$$

Letting $k \to \infty$ we obtain that

$$T(u) - \lim_{k \to \infty} T(u_{m_k}) = \lim_{k \to \infty} [T(u) - T(u_{m_k})] \ge \lim_{k \to \infty} \langle T'(u_{m_k}), u - u_{m_k} \rangle = 0.$$

Thus

$$T(u) \ge \lim_{k \to \infty} T(u_{m_k}). \tag{2.6}$$

On the other hand, by (ii) of Proposition 2.4 we have

$$T(u) \le \liminf_{k \to \infty} T(u_{m_k}). \tag{2.7}$$

Combining (2.6) and (2.7) we get $\lim_{k\to\infty}T(u_{m_k})=T(u)$. Now, we shall prove that $u_{m_k}\to u$ strongly in H. i.e.

$$\lim_{k\to\infty}||u_{m_k}-u||_H=0.$$

Indeed, we suppose by contradiction that $\{u_{m_k}\}$ does not converge strongly to $u \in H$. Then there exist a constant $\epsilon_0 > 0$ and a subsequence $\{u_{m_{k_j}}\}$ of $\{u_{m_k}\}$ such that

$$||u_{m_{k_i}}-u||_H \geq \epsilon_0, \quad \forall \ j=1,2,\ldots.$$

Recalling the equality

$$\left|\frac{\alpha+\beta}{2}\right|^2 + \left|\frac{\alpha-\beta}{2}\right|^2 = \frac{1}{2}(\alpha^2+\beta^2), \quad \forall \ \alpha,\beta \in \mathbb{R}$$

we deduce that for any j = 1, 2, ...

$$\frac{1}{2}T(u_{m_{k_{j}}}) + \frac{1}{2}T(u) - T\left(\frac{u_{m_{k_{j}}} + u}{2}\right) = k_{1}\|u_{m_{k_{j}}} - u\|_{H}^{p} \ge k_{1}\epsilon_{0}^{p} \quad k_{1} > 0.$$
(2.8)

Again instead of the remark that since $\left\{\frac{u_{m_{k_{j}}}+u}{2}\right\}$ converges weakly to u in E, by (ii) of Proposition 2.4 we have

$$T(u) \le \liminf_{j \to \infty} T\left(\frac{u_{m_{k_j}} + u}{2}\right).$$

Then from (2.8), letting $j \to \infty$ we obtain

$$T(u) - \liminf_{j \to \infty} T\left(\frac{u_{m_{k_j}} + u}{2}\right) \ge k_1 \epsilon_0^p$$

hence $0 \ge k_1 \epsilon_0^p$, which is a contradiction. There fore $\{u_{m_k}\}$ converges strongly to u in H. Thus, the functional J satisfies the Palais-Smale condition on H. The proof of Proposition 2.5 is complete.

We remark that the critical points of the functional J correspond to the weak solutions of problem (1.1). To apply the Mountain pass theorem we shall prove the following proposition which shows that the functional J has the Mountain pass geometry.

Proposition 2.6. (i) There exist $\alpha > 0$ and r > 0 such that $J(u) \ge \alpha > 0$, for all $u \in H$ and $||u||_H = r$.

(ii) There exists $u_0 \in H$ such that $||u_0||_H > r$ and $J(u_0) < 0$.

Proof. From (F_2) , (F_3) there exist a constant $c_1 > 0$ such that

$$F(x,z) < c_1|z|^{\alpha+1} \quad \forall \ z \in R \text{ a.e. } x \in \Omega.$$

Remark that $p < \alpha + 1 < p^*$, we have

$$\lim_{|z| \to 0} \frac{F(x, z)}{|z|^p} = 0, \tag{2.10}$$

$$\lim_{|z| \to \infty} \frac{F(x, z)}{|z|^{p^*}} = 0. \tag{2.11}$$

Then for a constant $\epsilon > 0$ there exist two positive constants δ_1 and δ_2 ($\delta_1 < \delta_2$) such that

$$F(x,z) < \epsilon |z|^p$$
 for all z with $|z| < \delta_1$,

$$F(x,z) < \epsilon |z|^{p^*}$$
 for all z with $|z| > \delta_2$.

On the other hand, from (2.9) there exists a constant $c_2 > 0$ such that

$$F(x,z) < c_2$$
 for all z with $|z| \in [\delta_1, \delta_2]$.

Then we obtain that for all $\epsilon > 0$ there exists a constant $c_{\epsilon} > 0$ such that

$$F(x,z) \le \epsilon |z|^p + c_{\epsilon} |z|^{p^*}$$

for all $z \in R$ and a.e. $x \in \Omega$.

We deduce from (2.12), condition (1.2) and the embedding $E \hookrightarrow L^{p^*}(\Omega)$ that

$$J(u) = \frac{1}{p} \int_{\Omega} (h(x)|\nabla u|^p + q(x)|u|^p) dx - \int_{\Omega} F(x,u) dx$$

$$\geq \frac{1}{p} \|u\|_{H}^{p} - \epsilon \int_{\Omega} |u|^{p} dx - c_{\epsilon} \int_{\Omega} |u|^{p^{*}} dx$$

$$\geq \frac{1}{p} \|u\|_{H}^{p} - \frac{\epsilon}{q_{0}} \int_{\Omega} q(x) |u|^{p} dx - c_{\epsilon} \int_{\Omega} |u|^{p^{*}} dx$$

$$\geq \left(\frac{1}{p} - \frac{\epsilon}{q_{0}}\right) \|u\|_{H}^{p} - \bar{c}_{\epsilon} \|u\|_{H}^{p^{*}}$$

where \bar{c}_{ϵ} is a positive constant.

Thus, for all $\epsilon > 0$ there exists a constant $\bar{c}_{\epsilon} > 0$ such that

$$J(u) \ge \left(\frac{1}{p} - \frac{\epsilon}{q_0} - \bar{c}_{\epsilon} ||u||_H^{p^* - p}\right) ||u||_H^p \quad \forall \ u \in H.$$

Therefore, letting $\epsilon \in \left(0, \frac{q_0}{2}\right)$ and for r > 0 small enough such that

$$\left(\frac{1}{p} - \frac{\epsilon}{q_0} - \bar{c}_{\epsilon} r^{p^* - p}\right) > 0.$$

We obtain that for all $u \in H$ with $||u||_H = r$.

$$J(u) \ge \left(\frac{1}{p} - \frac{\epsilon}{q_0} - \bar{c}_{\epsilon} r^{p^* - p}\right) r^p = \alpha > 0.$$

(ii) By condition (F_3) we have

$$F(x,z) > \lambda |z|^{\mu}$$
 for all $|z| \ge \eta$ and a.e. $x \in \Omega$.

where λ and η are two positive constants.

Now let $\varphi_0(x) \in C_0^{\infty}(\Omega)$ be such that

$$\max\{x \in \Omega : |\varphi_0(x)| \ge \eta\} > 0.$$

Then for t > 0 we have

$$J(t\varphi_0) = \frac{t^p}{p} \int_{\Omega} (h(x)|\nabla \varphi_0|^p + q(x)|\varphi_0|^p) dx - \int_{\Omega} F(x,t\varphi_0) dx$$

$$= \frac{t^p}{p} \|\varphi_0\|_H^p - \int_{x \in \Omega: |\varphi_0(x)| \ge \eta} F(x,t\varphi_0) dx - \int_{x \in \Omega: |\varphi_0(x)| \le \eta} F(x,t\varphi_0) dx$$

$$\leq \frac{t^p}{p} \|\varphi_0\|_H^p - t^\mu \lambda \int_{x \in \Omega: |\varphi_0(x)| \ge \eta} |\varphi_0|^\mu dx. \tag{2.12}$$

Since $\mu > p$ the right-hand side of (2.13) converges to $-\infty$ when $t \to +\infty$. Then there exists $t_0 > 0$ such that $||t_0\varphi_0||_H > r$ and $J(t_0\varphi_0) < 0$. Set $u_0 = t_0\varphi_0$ we have $J(u_0) < 0$ and $||u_0||_H > r$. The proof of Proposition 2.6 is complete.

Proposition 2.7.

- (i) J(0) = 0
- (ii) The acceptable set

$$G = \{ \gamma \in C([0,1], H) : \gamma(0) = 0, \gamma(1) = u_0 \}$$
 is not empty.

Proof. (i) It follows from the definition of functional J that J(0) = 0.

(ii) Let
$$\gamma(t) = tu_0$$
 where u_0 is given in Proposition 2.6. It is clear that $\gamma(t) \in C([0,1],H)$ and $\gamma(0) = 0, \gamma(1) = u_0$. Hence $\gamma \in G$ and G is not empty.

Proof of Theorem 2.1. By Propositions 2.3-2.7, all assumptions of the variation of the mountain pass theorem introduced in [3] are satisfied. Therefore, there exists $\hat{u} \in H$ such that

$$0 < \alpha \le J(\hat{u}) = \inf\{\max J(\gamma([0,1])) : \gamma \in G\}$$

and

$$\langle J'(\hat{u}), \nu \rangle = 0$$
 for all $\nu \in H$,

i.e. \hat{u} is a weak solution of problem (1.1). The solution \hat{u} is not trivial since $J(\hat{u}) > 0 = J(0)$. Theorem 2.1 is completely proved.

Acknowledgment. The authors would like to thank the referee, for his valuable suggestions and helpful comments on this work.

References

- [1] A. Abakhti-Mchachti and J. Fleckinger-Pellé, Existence of positive solutions for non-cooperative semilinear elliptic systems defined on an unbounded domain, *Pitman Research Notes in Maths.* **266** (1992), 92–106.
- [2] D.G. Costa, On a class of elliptic systems in \mathbb{R}^n , Electron. J. Differential Equations 7 (1994), 1–14.
- [3] D.M. Duc, Nonlinear singular elliptic equations, in *Mathematical Analysis and Applications*, *J. London. Math. Soc.* **40** (2) (1989), 420–440.
- [4] H.Q. Toan and N.T. Chung, Existence of weak solutions for a class of nonuniformly nonlinear elliptic equations in unbounded domains, *Nonlinear Anal.* **70** (2009), 3987–3996.
- [5] M. Mihilescu, Existence and multiplicity of weak solutions for a class of degenerate nonlinear elliptic equations, *Boud. Value Probl. Art.ID*, **41295** (2006), 1–17.
- [6] N.T. Vu and D.M. Duc, Nonuniformly elliptic equations of *p*-Laplacian type, *Nonlinear Anal.* **61** (2005), 1483–1495.

G.A. Afrouzi, University of Mazandaran, Babolsar, Iran.

E-mail: afrouzi@umz.ac.ir

Z. Naghizadeh, University of Mazandaran, Babolsar, Iran.

E-mail: z.naghizadeh@umz.ac.ir

F. Mirzadeh, Islamic Azad University, Ghaemshahr Branch, P.O.Box 163, Ghaemshahr, Iran.

M. Amirian, Islamic Azad University, Ghaemshahr Branch, P.O.Box 163, Ghaemshahr, Iran.

Received March 1, 2010 Accepted June 22, 2011