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Existence of Weak Solutions for A Class of Nonuniformly
Nonlinear Elliptic Equations of p-Laplacian Type

G.A. Afrouzi, Z. Naghizadeh, E Mirzadeh, and M. Amirian

Abstract. The goal of this paper is to study the existence of non-trivial weak
solutions for the nonuniformly nonlinear elliptic equation in an unbounded
domain. The solution will be obtained in a subspace of the Sobolev space and
the proofs rely essentially on a variation of the mountain pass theorem.

1. Introduction

Let Q be an unbounded domain in RY (N > 3) with smooth boundary Q. We
study the existence of non-trivial weak solutions of the following Dirichlet problem.

—div(h()|VulP72Vu) +q(x) |u P2 u = f(x,u) in Q
u=0 on 9N (1.1
u(x)—0 as |x| — 400

where the functions h and q satisfy the hypotheses h(x) € L}OC(Q), h(x) > 1, ae.
x € Q and q(x) € C(Q), there exists g, > 0 such that
q(x)>qy>0, ae xeQ, q(x)— +ooas|x|— co. (1.2)
We remark that in the case when h(x) =1 in Q and p = 2, problem (1.1) has been
studied in the article [5] and if  is a bounded domain it has been studied in the
article [6]. We reduce problem (1.1) to a uniform one by using an appropriate
weighted Sobolev space. Then applying a variation of the mountain pass theorem
in the article [3], [4] we prove that problem (1.1) admits a non-trivial weak
solution in a subspace of the Sobolev space Wol’p ().
In order to state our main theorem, let us introduce the following hypotheses:
(F): f(x,2)€ CHQXR,R), f(x,0)=0, ae. x €Q.
(Fy): There exists a function 7(x) > 0, a.e. x € Q, 7(x) € LPo(Q)NL*®(N2), where

N+p = pN
ae (1, pr)’ Po = SNTprnin—p) such that

If/(x,2)l < 7(x)|z|*" ae. x€Q, VzER.
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(F3): There exists a constant u > p such that
0 <uF(x,w)<z-f(x,z2)
for all x € Q, z €R\ {0}, where F(x,2) = fozf(x,s)ds.

For example let f(x,u) = u®, u =4, and p = 3. It can be shown that the function
f satisfy condition (F5). We define the norm of u € Wo1 P(Q) by

1

P
||u||W01,pm) = (J |[Vul? + Iulpdx)
Q

and consider the following subspace

E= {u € Wol’p((Q) : f (IVul? +q(x)|ulp)dx)l% < —l—oo}
Q

then E is a Banach space with the norm

1,
ullz = f (IVulP +q(OulP)dx, uew, ().
Q
Furthermore, we have
1
lulle > mg llully 1oy ¥ u € E
where my = min(1,q,) and the continuous embeddings
N

Eo Wi (@) - L®), psqsp=g—

hold true(see [1] or [5]).
Moreover, the embedding E — LP(2) is compact (see [2]).

1.1

We now introduce the space

1
H= {u €E: U (h(x)|Vul? + q(x)lulp)dx) ' < oo}

endowed with the norm ’
llully = J (h()IVul? +q()[ul?)dx.

As [4] it can be e:sily shown that H is a Banach space with the above norm.

Remark 1.1. (i) Since h(x) > 1, a.e.x € Q2 we have
lullg = llullp, VueH
(i) Vv e e, [ (hG)IVVI +q()v[*)dx < +oo.
Hence C;°(©2) C H.

Definition 1.2. We say that a function u € H is a weak solution of (1.1) if

J (h()|VulP2vuvv +q(x) |u [P~2 uv)dx — J fx,u)vdx =0
Q Q
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2. Main result
2.1
Our main result is stated as follows:

Theorem 2.1. Assuming (1.2) and (F,)-(F3) are satisfied, then problem (1.1) has at
least one nontrivial weak solution in H.

It is clear that equation (1.1) has a variational structure. Let J : H — R defined
by

J(w) = lf (h()IVulP +q(x) | u |P)dx —J F(x,u)dx
p Q Q

=T(w)—p(u) for ue H 2.1
where
T(uw) = % f (RGP +g(x) | u P)dx 2.2)
Q
P(u) = f F(x,u)dx. 2.3)
Q

Definition 2.2. Let J be a functional from a Banach space Y into R. We say that
J is weakly continuously differentiable on Y if and only if the following conditions
are satisfied:

(i) J is continuous on Y.
(ii) For any u €Y, there exists a linear map J’(u) from Y into R such that

Ju+tv)—J(u)
i t

t—0

=({J'(u),v) Vvey.
(iii) For any v € Y, the map u — (J’(u), v) is continuous on Y.

Proposition 2.3. Under the assumptions of Theorem 2.1, the functional J(u) is
weakly continuously differentiable on H and

(J'(w),v) = J (h(x)|VulP~2vuvy + q(x)|ulP~2uv)dx — J f(x,u)vdx
Q Q
forallu,v € H.

Proof. Following exactly the same procedures as in the proof of Proposition 2.2 in
article [4]. O

Proposition 2.4 ([4]). Suppose that {u,,} is a sequence weakly converging to u in
E. Then we have:

® lim P(u,)=P@

() Tw) < liminfT(um)
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Proposition 2.5 ([4]). The functional J(u), u € H given by (2.1) satisfies the Palais-
Smale condition.

Proof. Let {u,,} C H be a Palais-Smale sequence, i.e.
lim J(u,)=c, lim [|J'(u)llg=0.
m—-+o00 m—-+00

First we should prove that {u,,}is bounded in H.We suppose by contradiction that
{u,,,} is not bounded in H. Then there exists a subsequence {um}_} of {u,,} such that

ity — 00 as = oo,

Observe further that

1 1 1
J(umj) - _<J/(umj): umj> = T(umj) - _<T/(umj ): umj> + _<Pl(umj); um}) - P(umj)
u U U
1 1
> _ = p
> (p M) et 5

11 s 1
J(umj)z E_E ||um}||H+E<J (umj);um})

yields

o (2 DY 1 = 007 Y e
sl p u m; Il u m; H* m; H

_ 1
> [t 1 (yonum,.u‘;, - ;HJ’(um}.)um), 2.4)

where v, = (1_11 — ﬁ) > 0.

From (2.4) letting j — oo since ||umj |z — oo and ||J’(um],)||H* — 0 we deduce
J (um}_) — 00 which yields a contradiction. Hence, {||u,,||;} is bounded.

Since |[upll; < |ty lly, {u,}is also bounded in E. Therefore, there exists a
subsequence {u,, } of {u,} converging weakly to u in E. By Proposition 2.4 we

have
T(u) < li{ninfT(umk) = klim [P(um, )+ J ()] = P(u)+c < oo.

Therefore u € H.

Furthermore, since the embedding E < LP (£2) is continuous, {unm, } is weakly

1

convergent to u in LP (). Then it is clear that the sequence i, [Pt

converges weakly to |u[P~!u in L7 (Q) by
(k(u),w) = f T(x)uwdx, we L%(Q).

We remark k(u) is linear and continuous provided that 7(x) € LPo(Q), u € LP (Q),

L 1,1, _
welLr(Q)and —+ =+ = =1.
po PP
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By (F,) and (F,) we obtain

lim f £ 0t )y, —uw)dx =0
k—o0 Q
ie.
;}LIEO(P/(umk)’umk —u)=0. (2.5)
It follows from (2.5) that
JLH;(T/(umk )9 Up, — u) = ]}L%(J/(umk )9 Up, — u) + I}L%(-Pl(umk )9 Up, — u) =0.
Moreover, since T is convex the following inequality holds true
T(u) - T(umk) > <T/(umk ): u— umk>'
Letting k — oo we obtain that
T(w) = lim T(uy,) = lim [7(0) = T ()] 2 Hm (T, )t =y, ) = 0.
Thus
T(w) = lim T(uy,). (2.6)
k—00
On the other hand, by (ii) of Proposition 2.4 we have
T(w) < liminf T (uy, ). 2.7)
k—00
Combining (2.6) and (2.7) we get klim T(up,) = T(u). Now, we shall prove that
—00
Up, — ustrongly in H. ie.
T, —ully =0.
Indeed, we suppose by contradiction that {u,, } does not converge strongly to

u € H. Then there exist a constant €, > 0 and a subsequence {u,, } of {u,,}
]
such that

ltpm, —ullg =€, Vji=12,....
k}

Recalling the equality

2 2

a+p a—p 1
5| T :5(a2+[52), Ya,BER
we deduce that for any j =1,2,...
1 1 U, +u
ET(umk}-)_i' ET(H) - T( 12 ) = k1||umk}_ —ullf, > kyeh k;>0.
(2.8)
U, FU

Again instead of the remark that since { 5 } converges weakly to u in E, by (ii)
of Proposition 2.4 we have

Up, +U
T(u)SliminfT( ’2 )

J—00
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Then from (2.8), letting j — oo we obtain

]

Uy, +U
T(u)—liminfT( 12 ) >kyeb

hence 0 > k; eg, which is a contradiction. There fore {u,, } converges strongly to
uin H. Thus, the functional J satisfiesthe Palais-Smale condition on H. The proof
of Proposition 2.5 is complete.

We remark that the critical points of the functional J correspond to the weak
solutions of problem (1.1). To apply the Mountain pass theorem we shall prove
the following proposition which shows that the functional J has the Mountain pass
geometry.

Proposition 2.6. (i) There exist a > 0 and r > 0 such that J(u) > a > 0, for all
u€Hand| ullg=r.
(ii) There exists uy € H such that || uq ||z> r and J(u,) < O.

Proof. From (F,), (F5) there exist a constant ¢; > Osuch that
F(x,2) <c|z|*"! VzeRae xeq. (2.9)

Remark that p < a + 1 < p*, we have

F(x,z)
im =0, (2.10)
|z]—0 |Z|p
F(x,z)
im — =0 (2.11)
lz]—00  |z|P

Then for a constant € > 0 there exist two positive constants 6; and &, (§; < 8,)
such that

F(x,2) <e|z|P forall z with |z| <&,

F(x,2z) <e€lz|P forall z with |z] > &,.

On the other hand, from (2.9) there exists a constant ¢, > 0 such that
F(x,2) <c, forall z with |z| €[&;,6,].

Then we obtain that for all € > 0 there exists a constant ¢, > 0 such that
F(x,2) < elzP +c.|z|”

forallz €Rand a.e. x €Q.
We deduce from (2.12), condition (1.2) and the embedding E — LP'(2) that

J(uw) = l f (h(x)|Vul? + q()|ulP)dx — f F(x,u)dx
p Q Q
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1
I—)Ilullp f [ulPdx — c. f lulP dx

1
—IIuIIp ——J q()fufPdx —c, J lu” dx
9o Q

1 €
> == — ullf, —cllullf
(p CIo) Heomer

where ¢, is a positive constant.
Thus, for all € > 0 there exists a constant ¢, > 0 such that

1 € B ._
J(W > (— - — —&lull? ) lully, VueH.
P Qo

Therefore, letting € € (O, %) and for r > 0 small enough such that

1 € B
(2o
P Qo

We obtain that for all u € H with ||u||; =1

1 € .
J(u) = (————Eerp P)r":a>0.
P Qo

(ii) By condition (F;) we have
F(x,2)> Alz|* forall |2| >n and a.e. x €.
where A and 7 are two positive constants.
Now let p(x) € C°(£2) be such that
meas{x € Q: |po(x)| = n} > 0.

Then for t > 0 we have

p
J(tyo) = %f (h(OIV@olP + q(x)]polP)dx —J F(x,tpo)dx
Q

Q
tP p
= —ll@olly — F(x, tpo)dx — F(x,tpy)dx
p xeQilpo(x)1=n xeQilpo(x)|<n
tP
< —llgolly; — t“kj l@ol“dx. (2.12)
p x€Q:1po(x)[=n

Since u > p the right-hand side of (2.13) converges to —oo when t — +00. Then
there exists t, > 0 such that ||tq¢,lly > r and J(top,) < 0. Set uy = typ, we have
J(uy) < 0 and ||ug|| > r. The proof of Proposition 2.6 is complete. O

Proposition 2.7.

@ JO)=0
(ii) The acceptable set

G={yeC([0,1],H) : y(0) =0,y(1) =uy} is not empty.
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Proof. (i) It follows from the definition of functional J that J(0) = 0.
(ii) Let y(t) = tu, where u, is given in Proposition 2.6. It is clear thaty(t) €
C([0,1],H) and y(0) =0, y(1) = u,. Hence y € G and G is not empty. O

Proof of Theorem 2.1. By Propositions 2.3-2.7, all assumptions of the variation of
the mountain pass theorem introduced in [3] are satisfied. Therefore, there exists
i € H such that

0 < a < J(i) = inf{maxJ(y([0,1])): v € G}
and
(J'(@),v) =0 forall veH,

i.e. 1 is a weak solution of problem (1.1). The solution @ is not trivial since
J(@1) > 0 =J(0).Theorem 2.1 is completely proved. O
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