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DEA with a Perfect Object: Analytical Solutions

Alexander Vaninsky

Abstract. For the main DEA models, adding a Perfect Object — that is, a virtual

object that has the smallest inputs and greatest outputs — to a collection of actual

objects permits obtaining solutions analytically. The paper derives formulas for

the solutions and demonstrates that computations with them comprise simple

operations with ratios of inputs and outputs while avoiding the use of linear

programming (LP) algorithms. A numerical example illustrates the utility of the

approach.

1. Introduction

Data Envelopment Analysis (DEA), developed in the late 1970s and the 1980s by

Charnes et al. (1978) and Banker et al. (1984), has now become a well-established

means of estimating the relative efficiency of a group of objects referred to as

Decision-Making Units (DMUs). The objects use inputs X = (X j , j = 1, . . . , r) > 0 to

produce outputs Y = (Yi, i = 1, . . . , s) > 0, and DEA combines all of the indicators

of each object into a single efficiency score scaled to an interval [0,1]. An object

is considered efficient if it receives a score equal to 1, and inefficient if it receives

a score of less than 1. The DEA efficiency measure is based on the efficiency ratio

suggested by Farrell (1957):

E =

s
∑

i=1

uiYi

r
∑

j=1

v jX j

, (1)

where u = (u1, . . . ,us) and v = (v1, . . . , vr) are nonnegative weights assigned to

outputs and inputs, respectively. To estimate the weights, DEA sets up a series of

optimization problems similar to the following one:

2010 Mathematics Subject Classification. 90B50, 90C29, 90C32.

Key words and phrases. Data Envelopment Analysis; Analytical solutions; Perfect DEA Object.



2 Alexander Vaninsky

For each DMUk, k = 1, . . . , N , find nonnegative vectors uk = (uk1, . . . ,uks) and

vk = (vk1, . . . , vkr) such that:

Ek =

s
∑

i=1

uki Yki

r
∑

j=1

vk j Xk j

→max , (2)

subject to Em ≤ 1 for all DMUm, m = 1, . . . , N , in the group with the same weight

coefficients uk = (uk1, . . . ,uks) and vk = (vk1, . . . , vkr).

Specific DEA problems call for different modifications of the basic efficiency

ratio (1) and different constraints to ensure the existence of the solution. Cooper

et al. (2006), Thanassoulis (2001), and Zhu (2008) provide details and reviews of

contemporary methodology and techniques related to DEA.

The main advantage of DEA is its capacity to assign values to weight coefficients

u and v objectively. Conceptually, DEA allows each DMU to assign its own weight

coefficients to each input and output favorably. However, the potential of a given

DMU to achieve the maximal efficiency score is restricted by the requirement that

with the weight coefficients assigned to itself, no other DMU in the group receives

an efficiency score greater than 1. This means that a poorly performing DMU

cannot achieve a high efficiency score for itself by a manipulation of the weight

coefficients. In such a case, an object that performs extremely well would have

received an efficiency score greater than 1. Charnes et al. (1978), as well as Banker

et al. (1984) showed that maximization of the efficiency ratio (2) is equivalent to

solving a series of linear programming (LP) problems, one for each DMU in a group.

Applying a statement of the DEA problem suggested by Vaninsky (2008), this

paper adds a Perfect Object (PO) to the group of actual DMUs. The PO is given

the smallest inputs and greatest outputs in the group. As a result, it serves as

an objective benchmark for efficiency comparisons. The paper demonstrates that

the presence of the PO permits obtaining solutions of the main DEA problems

analytically, in explicit form. The formulas that are obtained have two important

advantages: they require only a moderate number of simple operations with ratios

of inputs and outputs, and they obviate the need for using LP algorithms.

The DEA models that this paper considers are the input minimization (IM) and

output maximization (OM) models, each with constant and variable returns to scale

(CRS and VRS, respectively). In addition, the paper considers a DEA model with

undesirable outputs (UO) for a case in which some outputs are undesired though

unavoidable — such as CO2 emissions in energy generation. Färe et al. (1989)

stated this problem, Seiford and Zhu (2002, 2005) suggested a DEA model for its

solution, and Zhou et al. (2008) offered details and discussion of it.

This paper presents results that permit the solving of DEA problems through

the use of simple spreadsheet formulas. For problems of small to moderate size,

scientific calculators suffice. The remainder of the paper presents results obtained
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for the main DEA models and offers a numerical example that illustrates the

general usefulness of the results in solving DEA problems. In addition to discussing

the results for the models, section 2 gives a theorem substantiating the explicit

form of solutions in the case of each model, and section 3 presents and explores

an example.

2. Analytical Solutions for the Main DEA Models

This section considers a group of N objects referred to as DMUk, k = 1, . . . , N ,

using inputs Xk = (Xk j , j = 1, . . . , r) > 0 to produce outputs Yk = (Yki , i =

1, . . . , s) > 0. We append to the group a Perfect Object, referred to as DMU0, such

that

0< X0 j ≤min
j
(Xk j , j = 1, . . . , r), Y0i ≥max

i
(Yki , i = 1, . . . , s) > 0. (3)

Figure 1, borrowed from Vaninsky (2008), shows a geometric interpretation of the

impact of the PO on CRS and VRS efficiency frontiers. In Figure 1, a Perfect Object

is located at point F so that X0 j = min Xk j , j = 1, . . . , r; Y0i = max Yki , i = 1, . . . , s;

k = 1, . . . , N .

Figure 1. DEA frontiers, Vaninsky (2008).

A Perfect Object (DMU0) is located at point F : X01 =min Xk1,

Y01 =max Yk1, k = 1, . . . , N .

Frontiers: OB — constant returns to scale;

ABC D — variable returns to scale;

OF — constant returns to scale with the Perfect Object;

AF D — variable returns to scale with the Perfect Object.

The following DEA models are considered in this section:
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1. Input minimization model, constant returns to scale (IM CRS).

For each DMUk, k = 1, . . . , N , find a nonnegative vector λk = (λk0,λk1,

λk2, . . . ,λkN ) = 0 and scalar θk such that

θk→min ,

subject to

N
∑

m=0

λkmXmj ≤ θkXk j , j = 1, . . . , r;

N
∑

m=1

λkmYmi ≥ Yki , i = 1, . . . , s; (4)

λkm ≥ 0, m= 1, . . . , N .

2. Input minimization model, variable returns to scale (IM VRS).

The IM VRS model resembles the IM CRS model with an additional constraint

imposed on the vector λk:

m=N
∑

m=0

λkm = 1, k = 1, . . . , N . (5)

3. Output maximization model, constant returns to scale (OM CRS).

For each DMUk, k = 1, . . . , N , find a nonnegative vector λk = (λk0,λk1,

λk2, . . . ,λkN ) = 0 and scalar ωk such that

ωk →max ,

subject to

N
∑

m=0

λkmXmj ≤ Xk j , j = 1, . . . , r;

N
∑

m=1

λkmYmi ≥ωkYki , i = 1, . . . , s; (6)

λkm ≥ 0, m= 1, . . . , N ;

4. Output maximization model, variable returns to scale (OM VRS).

The OM VRS model resembles the OM CRS model with an additional constraint

(5) imposed on vector the λk .

5. Output maximization model with undesirable outputs, variable returns to scale

(OM UO VRS).

For each DMUk, k = 1, . . . , N , find a nonnegative vector λk = (λk0,λk1,

λk2, . . . ,λkN ) = 0 and scalar ωk such that

ωk →max,
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subject to

N
∑

m=0

λkmXmj ≤ Xk j , j = 1, . . . , r;

N
∑

m=1

λkmYmi ≥ωkYki , i = 1, . . . , p;

N
∑

m=1

λkmY mi ≥ωkYki , i = p+ 1, . . . , s;

Y mi =Wi − Ymi > 0, i = p+ 1, . . . , s; (7)

N
∑

m=0

λkm = 1;

λkm ≥ 0, m= 1, . . . , N ;

Wi > max
0≤m≤N

Ymi , i = p+ 1, . . . , s;

In this model, the outputs Ymi , i = p + 1, . . . , s; m = 0, . . . , N — that is, those

from the (p+1)-th through the s-th — are undesirable. The model actually tends to

decrease these outputs by increasing corresponding translated outputs Y mi , their

complements to the values of Wi , i = p + 1, . . . , s. The values chosen for Wi , are

large enough to make all of the translated outputs positive. As Seiford and Zhu

(2002) showed, positiveness of the translated outputs is guaranteed for the VRS

model only. It is also true that the extent to which the choice of specific values of

Wi affects the efficiency scores has yet to be completely investigated.

The discussion below in this section presents considerations regarding DEA with

a Perfect Object. In the DEA models given by formulas (4)-(7), the efficiency scores

are defined as follows:

EIM = θ , EOM =
1

ω
, (8)

for all models, respectively. As is known,

EIM CRS = EOM CRS; ECRS ≤ EVRS . (9)

The inequality in formulas (9) holds for both IM and OM models. Cooper et al.

(2006) discuss in detail the equivalence of the efficiency scores given by formulas

(8) to those given by formulas (1) and (2). As in Banker et al. (1984), EIM CRS or

EOM CRS are referred to as total efficiency, corresponding values of EIM VRS or EOM VRS

are called technical efficiency, and their ratios,
EIM VRS

EIM CRS

or
EOM VRS

EOM CRS

are known as scale

efficiency, respectively.

The DEA models given by formulas (4)-(8) have the following interpretations.

For a given DMUk, an LP algorithm tends to construct a linear combination of all

DMUs in a group, including the DMUk itself, which provides either the smallest

possible inputs combined with outputs that are at least the same (IM models),

or the greatest possible outputs combined with inputs that are at most the same
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(OM models). Because the DMUk itself is included, the problems have solutions

θk = 1 or ωk = 1, correspondingly. However, better solutions can be found

for some DMUs with θk < 1 or ωk > 1, respectively. DMUs with minθk = 1

or maxωk = 1 are referred to as efficient; otherwise, they are considered

inefficient. The performance of the inefficient DMUs can be improved by acquiring

technological, managerial, or other features of other DMUs in a group. It is

known that a linear combination providing minθk or maxωk may be selected

so that only efficient DMUs are included. In other words, in a vector λk =

(λk0,λk1,λk2, . . . ,λkN ) ≥ 0 providing an optimal solution for a given DMUk, only

λkm corresponding to efficient DMUm are non-zero. Such DMUs are referred to as

peer DMUs for a given DMUk.

In the presence of a PO, the situation can be refined. This paper shows below

that an optimal solution always exists with the PO as the sole peer DMU. In

other words, an optimal solution exists with λk0 > 0, and all the remaining

λkm = 0, m = 1, . . . , N . If the PO is chosen so that Xo j < min Xk j , j = 1, . . . , s;

Yoi > max Yki , i = 1, . . . , r; k = 1, . . . , N ; then only the PO is efficient. In this

situation, the conclusion follows from the general theory of DEA. But the case in

which Xo j = min Xk j , j = 1, . . . , s; Yoi = max Yki , i = 1, . . . , r; k = 1, . . . , N —

actually the most important case for applications — requires special consideration.

Lemma. Given a Perfect Object — that is, a DMU0 satisfying conditions (3) —

an optimal solution exists with only λk0 > 0, and all the remaining λkm = 0,

m = 1, . . . , N.

Proof. To prove the lemma, we will consider each DEA model separately.

1. IM CRS model.

Let λ∗
k
= (λ∗

km
, m = 1, . . . , N) and θ ∗

k
be an optimal solution for a given DMUk.

Then, in accordance with formula (4), we have

N
∑

m=0

λ∗
km

Xmj ≤ θ
∗

k
Xk j , j = 1, . . . , r;

N
∑

m=1

λ∗
km

Ymi ≥ Yki , i = 1, . . . , s; (10)

λ∗
km
≥ 0, m= 1, . . . , N .

By exchanging each Xmj and Ymi in formula (10) for corresponding values of

X0 j and Y0i and taking formula (3) into consideration, we obtain

� N
∑

m=0

λ∗
km

�

X0 j =

N
∑

m=0

λ∗
km

X0 j ≤

N
∑

m=0

λ∗
km

Xmj ≤ θ
∗

k
Xk j , j = 1, . . . , r;

� N
∑

m=1

λ∗
km

�

Y0i =

N
∑

m=1

λ∗
km

Y0i ≥

N
∑

m=1

λ∗
km

Ymi ≥ Yki , i = 1, . . . , s. (11)
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Denoting

�

N
∑

m=0

λ∗
km

�∗∗

k0

as λ∗∗
k0

, we obtain

λ∗∗
k0

X0 j ≤ θ
∗

k
Xk j , j = 1, . . . , r,

λ∗∗
k0

Y0i ≥ Yki , i = 1, . . . , s, (12)

as desired.

2. IM VRS model.

The proof resembles that for the IM CRS model with

λ∗∗
k0
=

� N
∑

m=0

λ∗
km

�

= 1, (13)

as follows from formula (5). In this case, we obtain:

X0 j ≤ θ
∗

k
Xk j , j = 1, . . . , r,

Y0i ≥ Yki , i = 1, . . . , s, (14)

with the PO being the only peer DMU.

3. OM CRS model.

In a similar manner as for the IM CRS model, let λ∗
k
= (λ∗

km
, m = 1, . . . , N) and

ω∗
k

be an optimal solution for a given DMUk . Then, in accordance with formula

(6), we have

� N
∑

m=0

λ∗
km

�

X0 j =

N
∑

m=0

λ∗
km

X0 j ≤

N
∑

m=0

λ∗
km

Xmj ≤ Xk j , j = 1, . . . , r;

� N
∑

m=1

λ∗
km

�

Y0i =

N
∑

m=1

λ∗
km

Y0i ≥

N
∑

m=1

λ∗
km

Ymi ≥ω
∗

k
Yki , i = 1, . . . , s. (15)

As previously,

λ∗∗
k0

X0 j ≤ Xk j , j = 1, . . . , r,

λ∗∗
k0

Y0i ≥ω
∗

k
Yki , i = 1, . . . , s, (16)

where λ∗∗
k0

is given by formula (13). As above, the PO is the only peer object.

4. OM VRS model.

The following proof resembles that for the case of the OM CRS model with

λ∗∗
k0
= 1, as given by formula (5). In a similar manner as for the OM CRS model,

we obtain

X0 j ≤ Xk j , j = 1, . . . , r,

Y0i ≥ω
∗

k
Yki , i = 1, . . . , s, (17)

as required.

5. The model with undesirable outputs, OM UO VRS.

A proof in terms of translated outputs follows directly from the case of the

OM VRS model. The only issue is to show that the optimal values obtained for
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the undesirable outputs, Y ∗
ki

, i = p + 1, . . . , s, are positive. From formula (17)

we have

Y 0i =Wi − Y0i ≥ω
∗

k
Y ki =Wi − Y ∗

ki
, i = p+ 1, . . . , s, (18)

where the last equality is the definition of Y ∗
ki

. From formula (18) we obtain

Y ∗
ki
≥ Y0i > 0, i = p+ 1, . . . , s, (19)

as required.

Therefore, the lemma is proved. �

Now we can prove a theorem that provides analytical solutions for the DEA

models considered above. We assume that for a given DMUk, k = 1, . . . , N ,

λ
∗

k
= (λ∗

km
, m = 1, . . . , N) = (λ∗

k0
, 0, . . . , 0) is a vector providing optimal solutions

θ ∗
k
= minθk or ω∗

k
= maxωk for θk or ωk, respectively. For VRS problems, as

mentioned above, λ∗
k0
= 1.

Theorem. Efficiency scores for the DEA models under consideration are as follows:

(a) Input minimization model, constant returns to scale (IM CRS):

Ek IM CRS = θ
∗

k
= max

0≤ j≤r

X0 j

Xk j

× max
0≤i≤s

Yki

Yoi

. (20)

(b) Input minimization model, variable returns to scale (IM VRS):

Ek IM VRS = θ
∗

k
= max

0≤ j≤r

X0 j

Xk j

. (21)

(c) Output maximization model, constant returns to scale (OM CRS):

Ek OM CRS =
1

ω∗
k

= max
0≤ j≤r

X0 j

Xk j

× max
0≤i≤s

Yki

Y0i

, (22)

which is the same as EkIMCRS .

(d) Output maximization model, variable returns to scale (OM VRS):

Ek IM VRS =
1

ω∗
k

= max
0≤i≤s

Yki

Y0i

(23)

(e) Output maximization model with undesirable outputs, variable returns to scale

(OM UO VRS):

Ek OM VRS UO =
1

ω∗
k

=max

�

max
0≤i≤p

Yki

Y0i

, max
p+1≤i≤s

Y ki

Y 0i

�

=max

�

max
0≤i≤p

Yki

Y0i

, max
p+1≤i≤s

Wi − Yki

Wi − Y0i

�

. (24)

Proof. (a) IM CRS model.

Given

λ∗
k0

X0 j ≤ θ
∗

k
Xk j , j = 1, . . . , r,

λ∗
k0

Y0i ≥ Yki , i = 1, . . . , s, (25)
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we get

θ ∗
k
≥ λ∗

k0

X0 j

Xk j

, j = 1, . . . , r,

λ∗
k0
≥

Yki

Y0i

, i = 1, . . . , s. (26)

Since θ ∗
k

is the minimum of θk, minimal possible values should be assigned to

both of them:

λ∗
k0
= max

1≤i≤s

Yki

Y0i

,

θ ∗
k
= λ∗

k0
× max

1≤ j≤r

X0 j

Xk j

= max
1≤i≤s

Yki

Y0i

× max
1≤ j≤r

X0 j

Xk j

. (27)

The last equality in formulas (27) proves the case, since Ek IM CRS = θ
∗

k
.

(b) IM VRS model.

The proof is similar to that for the case of the IM CRS model with λ∗
k0
= 1. We

obtain

Ek IM VRS = θ
∗

k
= max

1≤ j≤r

X0 j

Xk j

. (28)

(c) OM CRS model.

Given

λ∗
k0

X0 j ≤ Xk j , j = 1, . . . , r,

λ∗
k0

Y0i ≥ω
∗

k
Yki , i = 1, . . . , s, (29)

we obtain

λ∗
k0
≤

Xk j

X0 j

, j = 1, . . . , r,

ω∗
k
≤ λ∗

k0

Y0i

Yki

, i = 1, . . . , s. (30)

Since ω∗
k

is the maximum of ωk, we should take the maximal values for both

of them:

λ∗
k0
= min

1≤ j≤r

Xk j

X0 j

,

ω∗
k
= λ∗

k0
min
1≤i≤s

Y0i

Yki

= min
1≤ j≤r

Xk j

X0 j

× min
1≤i≤s

Y0i

Yki

, (31)

so

Ek OM CRS =
1

ω∗
k

=
1

min
1≤ j≤r

Xk j

X0 j

× min
1≤i≤s

Y0i

Yki

= max
1≤ j≤r

X0 j

Xk j

× max
1≤i≤s

Yki

Y0i

. (32)

It follows from the last formula that Ek OM CRS = Ek IM CRS, in accordance with

the general theory of DEA.
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(d) OM VRS model.

The proof is similar to that in the case of the OM CRS model with λ∗
k0
= 1.

We obtain

ω∗
k
= max

1≤i≤s

Y0i

Yki

,

Ek OM VRS =
1

ω∗
k

= max
1≤i≤s

Yki

Y0i

, (33)

as required.

(e) The model with undesirable outputs, OM UO VRS.

Adjusting for undesirable outputs, we can treat this model simply as OM VRS.

So, as previously, we have,

Ek OM VRS UO =
1

ω∗
k

=max

�

max
0≤i≤p

Yki

Y0i

, max
p+1≤i≤s

Y ki

Y 0i

�

, (34)

with undesirable outputs separated for convenience. We can rewrite this

formula in terms of the original outputs and parameters Wi, i = p+1, . . . , s, as

follows:

Ek OM VRS UO =
1

ω∗
k

=max

�

max
0≤i≤p

Yki

Y0i

, max
p+1≤i≤s

Wi − Yki

Wi − Y0i

�

. (35)

The last formula proves the case.

Therefore, the theorem is proved. �

Corollary. Scale efficiencies for the IM and OM DEA models are as follows:

EScale
k IM
=

Ek IM CRS

Ek IM VRS

= max
0≤i≤s

Yki

Yoi

,

EScale
k OM

=
Ek OM CRS

Ek OM VRS

= max
0≤ j≤r

X0 j

Xk j

. (36)

A proof follows directly from taking the ratios of the CRS and VRS efficiencies

given by formulas (20) and (21) for the IM model and formulas (22) and (23) for

the OM model. Therefore, the corollary is proved.

Given formula (24), we can address the problem of the impact of Wi on

efficiency scores in cases where a PO is included. For each i, the component related

to parameters Wi , i = p+ 1, . . . , s is

Ek(Wi) =
Wi − Yki

Wi − Y0i

. (37)

Consider the derivative of Ek (Wi) with respect to Wi:

dEk

dWi

=
Yki − Y0i

(Wi − Y0i)
2
≥ 0. (38)

The derivative is nonnegative because Y 0i ≥ Y ki , and thus, Yki = Y0i . If Yki > Y0i ,

then the derivative is strictly positive, so in this case the term related to undesirable

outputs increases with the increase in Wi . With large values of Wi it becomes



DEA with a Perfect Object: Analytical Solutions 11

dominant in formula (24). This observation may serve as a guideline for the choice

of Wi: undesirable outputs that are preferable to other undesirable outputs should

be given larger values of this parameter.

3. Example

An analysis of the environmental efficiency of the electric power industry of

the United States can provide an example of the application of the approach

that this paper suggests. Working with information available on the Web site of

the Energy Information Administration (EIA; http://www.eia.doe.gov), we can

calculate efficiency scores by using Electrical Energy Loss (input X1), Electrical

Energy GDP Intensity (input X2), Fuel Utilization (output Y1), and CO2 Emission

Rate (output Y2, undesirable). Electrical Energy Loss is measured as the share of

generated energy that is lost in transition and distribution processes. Electrical

Energy GDP Intensity is measured as the amount of energy (kWh) that is expended

in the production of $1 GDP. Fuel Utilization is the ratio of the amount of electrical

energy generated to the amount of thermal energy required for its generation. CO2

Emission Rate is the amount of CO2 emitted per unit of generated electrical power

(g/1 kWh).

Table 1 presents calculations performed with formulas (20)-(24). The last row

is assigned to the Perfect Object, referred to as the PO or DMU0, and contains

minimal inputs or maximal outputs, respectively. Column 1 lists the DMUs — in

this case, the years from 1990 through 2006. Columns 2-5 contain DEA inputs and

outputs calculated on the basis of information from the Web site.

Columns 6 and 7 show the ratios of inputs PO/DMUk for X1 and X2, respectively,

and column 8 displays the maximum of each pair of values. Likewise, columns

9 and 10 show the ratios of outputs DMUk/PO for Y1 and Y2, respectively, and

column 11 displays the maximum of each pair of values. Column 12 displays the

product of the values in columns 8 and 11.

As follows from the theorem — specifically, formulas (20) and (22) — the

entries in column 12 are CRS efficiencies: Ek IM CRS = Ek OM CRS. The entries in

columns 8 and 11 are VRS efficiencies Ek IM VRS and EkOMVRS , as given by formulas

(21) and (23) respectively. These columns can be also treated as scale efficiencies:

EScale
k OM

and EScale
k IM

, respectively; see formulas (36).

Up to this point, the objective was to demonstrate technique of calculations,

and output Y2, CO2 Emissions Rate, was considered as a regular one. To make the

example practical, we continued our computations further with this output as an

undesirable (UO). Column 5 shows the output Y2, and column 13 shows Y 2, the

translated undesirable output (TUO). Since the values of Y2 are less than 1, we

used W2 = 1, so TUO= Y 2 =W2 − Y2 = 1− Y2.

Column 14 represents ratios of the translated undesirable output TUOk/TUO0,

and column 15 displays the maximum of each pair of values shown in columns



12 Alexander Vaninsky

Table 1. Example of calculations

DMUk X1 X2 Y1 Y2
X01

Xk1

X02

Xk2

max(
X0

Xk

)∗
Yk1

Y01

Yk2

Y02

max(
Yk

Y0

)♯ max X×

max Y

DEA Inp-1 Inp-2 Out-1 Out-2 EI MVRS EOM VRS EIM =

role (UO) EOM

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Y1990 0.0669 0.3989 0.4773 0.6357 0.8064 0.8460 0.8460 0.9921 0.9899 0.9921 0.8393

Y1991 0.0675 0.4065 0.4811 0.6272 0.7996 0.8302 0.8302 1.0000 0.9767 1.0000 0.8302

Y1992 0.0688 0.3949 0.4758 0.6322 0.7843 0.8545 0.8545 0.9890 0.9844 0.9890 0.8451

Y1993 0.0702 0.3984 0.4745 0.6359 0.7689 0.8471 0.8471 0.9863 0.9902 0.9902 0.8388

Y1994 0.0651 0.3932 0.4702 0.6355 0.8284 0.8582 0.8582 0.9774 0.9896 0.9896 0.8493

Y1995 0.0682 0.3939 0.4779 0.6213 0.7908 0.8566 0.8566 0.9935 0.9674 0.9935 0.8510

Y1996 0.0670 0.3907 0.4782 0.6275 0.8056 0.8638 0.8638 0.9941 0.9771 0.9941 0.8587

Y1997 0.0643 0.3794 0.4700 0.6393 0.8395 0.8895 0.8895 0.9770 0.9956 0.9956 0.8855

Y1998 0.0611 0.3778 0.4669 0.6420 0.8834 0.8933 0.8933 0.9706 0.9996 0.9996 0.8930

Y1999 0.0650 0.3679 0.4717 0.6330 0.8301 0.9173 0.9173 0.9806 0.9856 0.9856 0.9041

Y2000 0.0640 0.3659 0.4638 0.6422 0.8422 0.9222 0.9222 0.9642 1.0000 1.0000 0.9222

Y2001 0.0539 0.3596 0.4597 0.6395 1.0000 0.9383 1.0000 0.9556 0.9959 0.9959 0.9959

Y2002 0.0642 0.3614 0.4648 0.6207 0.8400 0.9337 0.9337 0.9661 0.9666 0.9666 0.9025

Y2003 0.0586 0.3555 0.4656 0.6221 0.9204 0.9492 0.9492 0.9679 0.9687 0.9687 0.9195

Y2004 0.0670 0.3481 0.4631 0.6188 0.8054 0.9695 0.9695 0.9626 0.9635 0.9635 0.9341

Y2005 0.0652 0.3468 0.4617 0.6198 0.8271 0.9731 0.9731 0.9598 0.9651 0.9651 0.9392

Y2006 0.0619 0.3375 0.4640 0.6069 0.8713 1.0000 1.0000 0.9645 0.9450 0.9645 0.9645

PO (DMU0) 0.0539 0.3375 0.4811 0.6422

DMUk TUO§ TUOk/TUO0 max Y U‡

DEA role Translated UO EOM UO VRS

(1) (13) (14) (15)

Y1990 0.3643 0.9268 0.9921

Y1991 0.3728 0.9483 1.0000

Y1992 0.3678 0.9357 0.9890

Y1993 0.3641 0.9262 0.9863

Y1994 0.3645 0.9272 0.9774

Y1995 0.3787 0.9634 0.9935

Y1996 0.3725 0.9476 0.9941

Y1997 0.3607 0.9175 0.9770

Y1998 0.3580 0.9108 0.9706

Y1999 0.3670 0.9337 0.9806

Y2000 0.3578 0.9102 0.9642

Y2001 0.3605 0.9170 0.9556

Y2002 0.3793 0.9649 0.9661

Y2003 0.3779 0.9614 0.9679

Y2004 0.3812 0.9698 0.9698

Y2005 0.3802 0.9672 0.9672

Y2006 0.3931 1.0000 1.0000

PO (DMU0) 0.3931

Notes: ∗ Equal to EScale
OM ; ♯ Equal to EScale

IM ; § T UO =W2 − Y2 = 1− Y2;
‡ max Y U =max(Yk1/Y01 , T UOk/T UO0), columns 9 and 14, respectively.

9 and 14. As follows from formula (24), the entries in column 15 are efficiency

scores corresponding to the DEA model with undesirable outputs, Ek OM UO VRS.
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The results obtained by applying the suggested approach of adding a Perfect

Object were checked with a DEA program using an LP algorithm.
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