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1. Introduction
In mathematics, a fixed point of a function is an element of the function’s domain that is mapped
to itself by the function. That is to say, x0 is a fixed point of the function f (x) if f (x0) = x0.
In numerical analysis, fixed-point iteration is a method of computing fixed points of iterated
functions. Let M be a nonempty subset of a linear space X , and let F(T) = {x ∈ M : Tx = x}
denotes the set of fixed points of the mapping T on M. Many nonlinear equations are naturally
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formulated as fixed point equations,

x = Tx , (1.1)

where T : X → X is a mappings. A solution x of the equation (1.1) is called a fixed point of the
mapping T . We consider a Picard iteration, which is given by

xn+1 = Txn, ∀ N. (1.2)

For the Banach contraction mapping theorem, the Picard iteration converges unique fixed point
of T , but it fails to approximate fixed point for nonexpansive mappings, even when the existence
of a fixed point of T is guaranteed (see [8]). Consider T : [0,1]→ [0,1] defined by Tx = 1− x for
x ∈ [0,1]. Then T is nonexpansive with a unique fixed point at x = 1

2 . If we choose a starting
value x = a 6= 1

2 , then the successive iteration of T yield the sequence {1−a,a,1−a, · · ·} (see [8]).
Next, let (X ,d) be metric space and let M be a nonempty subset of X . A mapping T : M → M is
said to be nonexpansive, if

d(Tx,T y)≤ d(x, y), (1.3)

for each x, y ∈ M. Define a mapping T on [0,1] by

Tx = x .

It is easy to see that T is nonexpansive. In the last fifty years, the numerous numbers of
researchers attracted in these direction and developed iterative process has been investigated
to approximate fixed point for not only nonexpansive mapping, but also for some wider class of
nonexpansive mappings (see e.g., [2]-[22]), and compare which one is faster to approximate the
fixed point as earliest as possible.

Let (X ,d) be metric space and let M be a nonempty subset of X . A mapping T : M → M is
said to be quasi-nonexpansive, if

d(Tx, p)≤ d(x, p)

for each x ∈ M and p ∈ F(T). Define a mapping T on [0,3] by

Tx =
{

0, x 6= 3,
2, x = 3.

Then F(T)= {0} 6= ; and T is quasi-nonexpansive, but T does not satisfy condition C (see [25]).

In 2008, Suzuki [25] introduced a class of single valued mappings called Suzuki-generalized
nonexpansive mappings (or condition C), as follows: Let T be a self-mapping on a subset M of a
metric space X . Then T is said to satisfy condition C if

1
2

d(x,Tx)≤ d(x, y)⇒ d(Tx,T y)≤ d(x, y),

for each x, y ∈ M.

It is obvious that every nonexpansive mapping satisfies condition C, but the converse
is not true, that is condition C is weaker than nonexpansiveness and stronger than quasi
nonexpansiveness. The next simple example can show this fact. We see that, if define a mapping
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T1 and T2 on [0,3] by

T1x =
{

0, x 6= 3,
1, x = 3

and

T2x =
{

0, x 6= 3,
3
2 , x = 3.

Then T1 and T2 are condition C, but T1 and T2 are not nonexpansive (see [25]).

Definition 1.1. Let (X ,d) be a metric space and M be its nonempty subset. Then T : M → M
said to be i if there exists a constant L > 0 such that

d(Tx,T y)≤ Ld(x, y)

for all x, y ∈ M.

Example 1.2. Consider, T : [0,2]→ [0,2], define by

Tx = x2, ∀ x ∈ [0,2].

It is easy to see that T is L-Lipschitzian, but T is not nonexpansive.

In 2011, Sahu [20] introduced Normal S-iteration Process, whose rate of convergence similar
to the Picard iteration process and faster than other fixed point iteration processes, as follows:
For M a convex subset of normed space X and a nonlinear mapping T of M into itself, for each
x1 ∈ M, the sequence {xn} in M is defined by{

xn+1 = T yn

yn = (1−αn)xn +αnTxn, n ∈N,
(1.4)

where {αn} is real sequences in (0,1).
In 2014, Kadioglu [10] defined Picard normal S-iteration process (PNS) as follows: With C,

X and T as in (NS), for each x1 ∈ C, the sequence {xn} in C is defined by
xn+1 = T yn

yn = (1−αn)zn +αnTzn

zn = (1−βn)xn +βnTxn, n ∈N,
(1.5)

where {αn} and {βn} is real sequences in (0,1). If βn = 0 and αn =βn = 0 in (1.5) then it reduces
to Normal S-iteration process and Picard iteration process respectively.

On the other hand, Kohlenbach [13] introduced hyperbolic spaces, as follows: A hyperbolic
space is a triple (X ,d,W), where (X ,d) is a metric space and W : X2 × [0,1]→ X is such that

W1: d(u,W(x, y,α))≤αd(u, x)+ (1−α)d(u, y);

W2: d(W(x, y,α),W(x, y,β))= |α−β|d(x, y);

W3: W(x, y,α)=W(y, x,1−α);

W4: d(W(x, z,α),W(y,w,α))≤ (1−α)d(x, y)+αd(z,w),

for all x, y, z,w ∈ X and α,β ∈ [0,1].
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Moreover, a metric space is said to be a convex metric space in the sense of Takahashi [26],
where a triple (X ,d,W) satisfy only W1. The concept of hyperbolic spaces in [13] is more
restrictive than the hyperbolictype introduced by Goebel and Kirk [6] since W1-W2 together are
equivalent to (X ,d,W) being a space of hyperbolic type in [6]. But it is slightly more general
than the hyperbolic space defined in Reich and Shafrir [19] (see [13]). This class of metric spaces
in [13] covers all normed linear spaces, R-trees in the sense of Tits, the Hilbert ball with the
hyperbolic metric (see [7]), Cartesian products of Hilbert balls, Hadamard manifolds (see [19]),
and CAT(0) spaces in the sense of Gromov (see [4] for a detailed treatment). A thorough
discussion of hyperbolic spaces and a detailed treatment of examples can be found in [13]
(see also [6], [7], [19]). Define the function d : X2 → [0,∞) by

d(x, y)= ‖x− y‖
as a metric on X , where X is a real Banach space which is equipped with norm ‖ · ‖. Then,
we have that (X ,d,W) is a hyperbolic space with mapping W : X2 × [0,1] → X defined by
W(x, y,α)= (1−α)x+αy (see [24]).

In this paper, we prove some properties of a L-Lipschitzian Suzuki-generalized nonexpansive
mapping on a nonempty subset of a hyperbolic space and prove ∆-convergence theorems and
convergence theorems for a L-Lipschitzian Suzuki-generalized nonexpansive mapping in a
hyperbolic space.

Next, we recall the same basic definitions, notations and some results on hyperbolic spaces
that will be used in the later section.

2. Preliminaries
Now, we recall definitions on hyperbolic spaces. If x, y → X and λ ∈ [0,1], then we use the
notation (1−λ)x⊕λy for W(x, y,λ). The following holds even for the more general setting of
convex metric space [26], as follows:

d(x,W(x, y,λ))=λd(x, y) and d(y,W(x, y,λ))= (1−λ)d(x, y)

for all x, y ∈ X and λ ∈ [0,1].
A hyperbolic space (X ,d,W) is uniformly convex [23] if for any r > 0 and ε ∈ (0,2], there

exists δ ∈ (0,1] such that for all a, x, y ∈ X ,

d
(
W

(
x, y,

1
2

)
,a

)
≤ (1−δ)r

provided d(x,a)≤ r,d(y,a)≤ r and d(x, y)≥ εr.
A mapping η : (0,1)× (0,2] → (0,1], which providing such a δ = η(r,ε) for given r > 0 and

ε ∈ (0,2], is called as a modulus of uniform convexity [24]. We call the function η is monotone if
it decreases with r (for fixed ε), that is, η(r2,ε)≤ η(r1,ε), ∀ r2 ≥ r1 > 0.

Let M be a nonempty subset of metric space (X ,d) and {xn} be any bounded sequence in X
while diam(M) denote the diameter of M. Consider a continuous functional ra(·, {xn}) : X →R+

defined by

ra(x, {xn})= limsup
n→∞

d(xn, x), x ∈ X .
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The infimum of ra(·, {xn}) over M is said to be the asymptotic radius of {xn} with respect to M
and is denoted by ra(M, {xn}). A point z ∈ M is said to be an asymptotic center of the sequence
{xn} with respect to M if

ra(z, {xn})= inf{ra(x, {xn}) : x ∈ M},

the set of all asymptotic centers of {xn} with respect to M is denoted by AM(M, {xn}). This set
may be empty, a singleton, or certain infinitely many points. If the asymptotic radius and the
asymptotic center are taken with respect to X , then these are simply denoted by ra(X , {xn})=
ra({xn}) and AM(X , {xn})= AM({xn}), respectively. We know that for x ∈ X , ra(x, {xn})= 0 if and
only if lim

n→∞xn = x. It is known that every bounded sequence has a unique asymptotic center
with respect to each closed convex subset in uniformly convex Banach spaces and even CAT(0)
spaces (see [8]).

Definition 2.1 ([12]). A sequence {xn} in X is said to ∆-converge to x ∈ X , if x is the unique
asymptotic center of {xnk } for every subsequence {xnk } of {xn}. In this case, we write ∆- lim

n→∞xn = x.

Remark 2.2. We note that ∆-convergence coincides with the usually weak convergence known
in Banach spaces with the usual Opial property.

Lemma 2.3 ([15]). Let (X ,d,W) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η. Then every bounded sequence {xn} in X has a unique asymptotic
center with respect to any nonempty closed convex subset K of X .

Lemma 2.4 ([5]). Let X be a complete uniformly convex hyperbolic space with monotone modulus
of uniform convexity η and let {xn} be a bounded sequence in X with A({xn})= {x}. Suppose {xnk }
is any subsequence of {xn} with A({xn})= {x1} and {d(xn, x1)} converges, then x = x1.

Lemma 2.5 ([11]). Let (X ,d,W) be a uniformly convex hyperbolic space with monotone modulus
of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a,b] for some a,b ∈ (0,1). If {xn} and
{yn} are sequences in X such that limsup

n→∞
d(xn, x)≤ c, limsup

n→∞
d(yn, x)≤ c and lim

n→∞Wd(xn, yn,αn)

for some c ≥ 0. Then lim
n→∞d(xn, yn)= 0.

Lemma 2.6 ([18]). Let {δn}, {βn} and {γn} be three sequences of nonnegative numbers such that

δn+1 ≤βnδn +γn

for all n ∈N. If βn ≥ 1 for all n ∈N,
∞∑

n=1
(βn −1)<∞ and

∞∑
n=1

γn <∞, then lim
n→∞δn exists.

Definition 2.7 ([21]). Let (X ,d) be a metric space and M be it’s nonempty subset of X and T
be a self-mapping on M, then a sequence {xn} in M is called approximate fixed point sequence
for T (AFPS, in short) if lim

n→∞d(xn,Txn)= 0.

Theorem 2.8 ([1]). Let M be a nonempty closed convex subset of a complete CAT(0) space X ,
T : M → M a nearly asymptotically quasi-nonexpansive mapping with sequence {an,un} such
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that
∞∑

n=1
an <∞ and

∞∑
n=1

un <∞. Assume that F(T) is a closed set. Let {xn} be a sequence in M.

Then {xn} converges strongly to a fixed point of T if and only if liminf
n→∞ d(xn,F(T))= 0.

3. Main Results
In this section, we begin with the definition of L-Lipschitzian Suzuki-generalized nonexpansive
mapping.

Definition 3.1. Let T be a self-mapping on a subset M of a metric space X . Then T is said to
satisfy L-Lipschitzian Suzuki-generalized nonexpansive if there exists a constant L > 0 such
that

1
2

d(x,Tx)≤ d(x, y)⇒ d(Tx,T y)≤ Ld(x, y), ∀ n ≥ 1, x, y ∈ M.

Example 3.2. Consider, T : [0,2]→ [0,2], define by

Tx =
{

0, x 6= 2,
x2, x = 2.

If x = 2 and y ∈ (0,1), then
1
2

d(2,T2)= 1≤ d(2, y) and d(T2,T y)= 4≤ Ld(2, y).

Thus, we see that T is not condition C, because d(T2,T y)= 4> d(2, y). In other cases, for any
L ≥ 4

d(2,y) , a map T satisfies L-Lipschitzian Suzuki-generalized nonexpansive.

Remark 3.3. We consider Example 3.2, for x = 2 and y ∈ (0,1), if we choose L < 4
d(2,y) , then

we have a map T satisfies L-Lipschitzian Suzuki-generalized nonexpansive, but T is not
L-Lipschitzian.

Example 3.4. Consider, T : [0,2]→ [0,2], define by

Tx =
{

x2, x 6= 2,
1, x = 2.

If x = 2 and y ∈ (
1, 1

2

)
, then

1
2

d(2,T2)= 1
2
≤ d(x, y) and d(T2,T y)≤ Ld(2, y) (3.1)

hold. Thus, T satisfies L-Lipschitzian Suzuki-generalized nonexpansive mapping for any
L ≥ d(T2,T y)

d(2,y) , but T is not condition (C) because d(T2,T y) > d(2, y). In other cases, it’s easy
to see that, a map T satisfies L-Lipschitzian Suzuki-generalized nonexpansive.

Remark 3.5. We will see that in Example 3.4, for x = 2 and y ∈ (
1, 1

2

)
, if we choose L < d(Tx,T y)

d(x,y) ,
then we have a map T satisfies L-Lipschitzian Suzuki-generalized nonexpansive, but T is not
L-Lipschitzian.

Proposition 3.6. Let {Ti}k
i=1 be a self finite family of L i-Lipschitzian Suzuki-generalized
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nonexpansive mappings on M. Then

d(xn,Ti y)≤ (1+2L i)d(xn,Tixn)+L id(xn, y)

for all x, y ∈ M, {xn} is approximate fixed point sequence in M.

Proof. Let x, y ∈ M, since {Ti}k
i=1 is a self finite family of L i-Lipschitzian Suzuki-generalized

nonexpansive mappings on M, we have
1
2

d(xn,Tixn)= 0≤ d(xn, y),

for all n ∈N, then

d(Tixn,Ti y)≤ L id(xn, y).

Now, we consider

d(xn,Ti y)≤ d(xn,Tixn)+d(Tixn,T2
i xn)+d(T2

i xn,Ti y)

≤ (1+L i)d(xn,Tixn)+L id(Tixn, y)

≤ (1+2L i)d(xn,Tixn)+L id(xn, y).

Hence, d(xn,Ti y)≤ (1+2L i)d(xn,Tixn)+L id(xn, y).

Let (X ,d) be a metric space and let M be a nonempty subset of X . We will denote the fixed

point set of mapping {Ti}k
i=1 by F(T) :=

k⋂
i=1

F(Ti).

Lemma 3.7. Let M be a nonempty and convex subset of a strictly convex hyperbolic space X .
If {Ti}k

i=1 be a self finite family of unL i-Lipschitzian Suzuki-generalized nonexpansive mappings
on M, that is there exist a sequence {un} and L i > 0 such that

1
2

d(x,Tix)≤ d(x, y)⇒ d(Tix,Ti y)≤ unL id(x, y),

∀ n ≥ 1, x, y ∈ M with unL i → 1, for all i = 1,2, . . . ,k and F(T) 6= ;. If {xn}, {yn} are bounded
approximate fixed point sequence in M, then F(T) is closed and convex.

Proof. Assume that {xn} is a sequence in F(T) which converges to some y ∈ M. To show that
y ∈ F(T) by Proposition 3.6, we obtain that

d(xn,Ti y)≤ (1+2L i)d(xn,Tixn)+unL id(xn, y)

≤ (1+2L i)d(xn,Tixn)+d(xn, y).

Thus,

limsup
n→∞

d(xn,Ti y)≤ limsup
n→∞

(1+2L i)d(xn,Tixn)+ limsup
n→∞

d(xn, y).

Since {xn} ⊆ F(T), we have limsup
n→∞

d(xn,Ti y) ≤ limsup
n→∞

d(xn, y). By the uniqueness of the limit

point we obtain that Ti y= y, that is y ∈ F(T), and then F(T) is closed.
Now, we will to show that F(T) is convex. Let x, y ∈ F(T) and each α ∈ (0,1). Then,

d(x, y)≤ d(x,Ti(W(x, y,α)))+d(Ti(W(x, y,α)), y)

≤ d(x,W(x, y,α))+d(W(x, y,α), y)
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≤ d(x, y).

Now, we consider

d(x,Ti(W(x, y,α)))≤ (1+2L i)d(x,Tix)+unL id(x,W(x, y,α))

≤ (1+2L i)d(x,Tix)+d(x,W(x, y,α))

≤ d(x,W(x, y,α))

and

d(y,Ti(W(x, y,α)))≤ (1+2L i)d(y,Ti y)+unL id(y,W(x, y,α))

≤ (1+2L i)d(y,Ti y)+d(y,W(x, y,α))

≤ d(y,W(x, y,α)),

we get that d(x,Ti(W(x, y,α))) = d(x, (W(x, y,α))) and d(Ti(W(x, y,α)), y) = d(W(x, y,α), y),
because if d(x,Ti(W(x, y,α)))≤ d(x,W(x, y,α)) or d(Ti(W(x, y,α)), y)≤ d(W(x, y,α), y), then which
the contradiction to d(x, y) < d(x, y). Since M is strictly convex, we have Ti(W(x, y,α)) =
W(x, y,α), so W(x, y,α) ∈ F(T). Hence, F(T) is convex.

Lemma 3.8. Let (X ,d) be complete uniformly convex hyperbolic space with monotone modulus
of convexity η, M be a nonempty closed convex subset of X and {Ti}k

i=1 be a self finite family of
unL i-Lipschitzian Suzuki-generalized nonexpansive mappings on M. Suppose {xn} is bounded
sequence in M with {xn} is bounded approximate fixed point sequence for {Ti}k

i=1, then {Ti}k
i=1

have a fixed point.

Proof. Since {xn} is bounded sequence in X , then by Lemma 2.3, has unique asymptotic center
in M, that is, AM(M, {xn}) = {x} is singleton and lim

n→∞d(xn,Tixn) = 0. Since {Ti}k
i=1 satisfies a

self finite family of unL i-Lipschitzian Suzuki-generalized nonexpansive on M, there exist a
sequence {un} and L i > 0 such that

d(xn,Tix)≤ (1+2L i)d(xn,Tixn)+unL id(xn, x)

≤ (1+2L i)d(xn,Tixn)+d(xn, x).

Taking limsup as n →∞ both the sides, we have

ra(Tix, {xn})= limsup
n→∞

d(xn,Tix)

≤ limsup
n→∞

[(1+2L i)d(xn,Tixn)+d(xn, x)]

≤ limsup
n→∞

d(xn, x)= ra(x, {xn}).

By the uniqueness of asymptotic center, Tix = x, thus x is fixed point of T . Hence, F(T) is
nonempty and then {Ti}k

i=1 has a fixed point.

Now, we expand the result of Kadioglu [10] (PNS) to L-Lipschitzian Suzuki-generalized
nonexpansive mappings in hyperbolic spaces, as follows: Let M be a nonempty closed convex
subset of a hyperbolic space X and {Ti}k

i=1 be a self finite family of L-Lipschitzian Suzuki-
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generalized nonexpansive mappings on M. For any x1 ∈ M the sequence {xn} is defined by
xn+1 = Ti y
yn =W(zn,Ti zn,αn)
zn =W(xn,Tixn,βn), n ∈N,

(3.2)

where {αn} and {βn} are in [0,1] for all n ∈N.

Theorem 3.9. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let a slef-map {Ti}k

i=1
be a self finite family of L i-Lipschitzian Suzuki-generalized nonexpansive mappings on M, such
that F(T) 6= ;. Then the sequence {xn} defined in (3.2), ∆-converges to a common fixed point of
{Ti}k

i=1.

Proof. We divide our proof into three steps.
First, we will show that lim

n→∞d(xn, p) exists for each p ∈ F(T). Since {Ti}k
i=1 satisfies the L i-

Lipschitzian Suzuki-generalized and p ∈ F(T), we have
1
2

d(p,Ti p)= 0≤ d(p, zn),

1
2

d(p,Ti p)= 0≤ d(p, yn)

and
1
2

d(p,Ti p)= 0≤ d(p, xn),

for all n ∈N, we get that

d(Ti p,Ti zn)≤ L id(p, zn),

d(Ti p,Ti yn)≤ L id(p, yn)

and

d(Ti p,Tixn)≤ L id(p, xn).

By (3.2), we have

d(zn, p)= d(W(xn,Tixn,βn), p)

≤ (1−βn)d(xn, p)+βnd(Tixn, p)

= (1−βn)d(xn, p)+βnd(Tixn,Ti p)

≤ (1−βn)d(xn, p)+βnL id(xn, p)

= (1−βn +βnL i)d(xn, p), ∀ n ∈N. (3.3)

Using (3.2) and (3.3), we have

d(yn, p)= d(W(zn,Ti zn,αn), p)

≤ (1−αn)d(zn, p)+αnd(Ti zn, p)

= (1−αn)d(zn, p)+αnd(Ti zn,Ti p)

≤ (1−αn)d(zn, p)+αnL id(zn, p)
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= (1−αn +αnL i)d(zn, p)

≤ (1−αn +αnL i)[(1−βn +βnL i)d(xn, p)]

= [(1−αn +αnL i)(1−βn +βnL i)]d(xn, p), ∀ n ∈N. (3.4)

From (3.3) and (3.4), we have

d(xn+1, p)= d(Ti yn, p)

= d(Ti yn,Ti p)

≤ L id(yn, p)

≤ L i[(1−αn +αnL i)(1−βn +βnL i)]d(xn, p)

= [(L i −αnL i −βnL i)+ (αnL2
i +βnL2

i )+ (αnβnL3
i −2αnβnL2

i +αnβnL i)]d(xn, p)

=µnd(xn, p), ∀ n ∈N (3.5)

where µn = (L i−αnL i−βnL i)+ (αnL2
i +βnL2

i )+ (αnβnL3
i −2αnβnL2

i +αnβnL i). Since
∞∑

n=1
αn <∞

and
∞∑

n=1
βn <∞, so that

∞∑
n=1

(µn −1) <∞. Therefore, by Lemma 2.6, we have that lim
n→∞d(xn, p)

exists for each p ∈ F(T).

Secondary step, we prove that lim
n→∞d(xn,Tixn)= 0. Let lim

n→∞d(xn, p)= c ≥ 0.

(i) If c = 0, we obviously have

d(xn,Tixn)≤ d(xn, p)+d(Tixn, p)

≤ (1+L i)d(xn, p),

taking lim as n →∞ on both the sides, we have lim
n→∞d(xn,Tixn)= 0.

(ii) If c > 0, since {Ti}k
i=1 is a self finite family of L i-Lipschitzian Suzuki-generalized

nonexpansive mappings and p ∈ F(T), we have

d(Tixn, p)≤ L id(xn, p),

taking limsup as n →∞ both the sides, we have

limsup
n→∞

d(Tixn, p)≤ L i c,

taking limsup as n →∞ both the sides in (3.3), we have

limsup
n→∞

d(zn, p)≤ L i c. (3.6)

Since

d(xn+1, p)≤ L i(1−αn +αnL i)d(zn, p),

so, we take liminf as n →∞ both the sides, we get

liminf
n→∞ d(xn+1, p)≤ liminf

n→∞ d(zn, p)

L i c ≤ liminf
n→∞ d(zn, p). (3.7)

By (3.6) and (3.7), we have

lim
n→∞d(zn, p)= L i c,
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it implies that

L i c = limsup
n→∞

d(zn, p)

= limsup
n→∞

[d(W(xn,Tixn,βn), p)]

= limsup
n→∞

[d((1−βn)xn ⊕βnTixn, p)]

≤ limsup
n→∞

[(1−βn)d(xn, p)+βnd(Tixn, p)]

≤ limsup
n→∞

(1−βn)d(xn, p)+ limsup
n→∞

βnd(Tixn, p)= L i c.

From Lemma 2.5, we have lim
n→∞d(xn,Tixn)= 0.

Finally, we will prove that the sequence {xn} ∆-converges to a fixed point of Ti . Since
{d(xn, p)} is bounded, by Lemma 2.3, it follows that {xn} has a unique asyptotic center. Let u,v
∆-limits of the subsequence of {un}, {vn}⊂ {xn}. Since F(T) 6= ;, we have u and v are fixed points
of {Ti}k

i=1. Now, we claim that u = v. Let u 6= v, then by uniqueness of asymptotic center

limsup
n→∞

d(xn,u)= limsup
n→∞

d(un,u)

< limsup
n→∞

d(un,v)

= limsup
n→∞

d(xn,v)

= limsup
n→∞

d(vn,v)

< limsup
n→∞

d(vn,u)

= limsup
n→∞

d(xn,u),

which is a contradiction. Therefore u = v, the sequence {xn} ∆-converges to a fixed point of T .
This completes the proof.

Theorem 3.10. Let M be a nonempty closed convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let a self-map {Ti}k

i=1 be
a self finite family of L i-Lipschitzian Suzuki-generalized nonexpansive mappings on M, such
that F(T) 6= ; and F(T) is closed. Then the sequence {xn} defined in (3.2) converges strongly to
p ∈ F(T) if and only if liminf

n→∞ d(xn,F(T))= 0, where d(xn,F(T))= inf
p∈F(T)

d(xn, p).

Proof. Necessity is obvious, we only prove the sufficiency. Assume that

liminf
n→∞ d(xn,F(T))= 0.

From (3.5)

d(xn+1,F(T))≤µnd(xn,F(T)), n ∈N
then lim

n→∞d(xn,F(T)) exists. Hence by the hypothesis, liminf
n→∞ d(xn,F(T)) = 0, then we have

lim
n→∞d(xn,F(T))= 0.

Now, we show that {xn} is a Cauchy sequence. By Theorem 2.8, we obtained the following
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inequality

d(xn+m, p)≤ Kd(xn, p)

for each p ∈ F(T) and for all m,n ∈ N, where K = e

(n+m−1∑
j=n

µ j

)
> 0. As,

∞∑
n=1

µn < ∞ thus

K∗ = e

( ∞∑
n=1

µn

)
≥ K = e

(n+m−1∑
j=n

µ j

)
> 0. Let ε > 0 be arbitrarily. Since lim

n→∞d(xn,F(T)) = 0, there
exists a positive integer n0 such that

d(xn,F(T))< ε

4K∗ , ∀ n ≥ n0.

In particular, inf{d(xn0 , p) : p ∈ F(T)}< ε
4K∗ . So there exist p∗ ∈ F(T) such that

d(xn0 , p∗)< ε

2K∗ .

Thus, for n ≥ n0, we have

d(xn+m, xn)≤ d(xn+m, p∗)+d(p∗, xn)

≤ 2K∗d(xn0 , p∗)

< 2K∗
( ε

2K∗
)
= ε.

Hence, {xn} is a Cauchy sequence in M. Since M is a closed subset of a complete uniformly
convex hyperbolic space, so it must converge strongly to a point p in M. Since F(T) is closed,
lim

n→∞d(xn,F(T))= 0, that is, p ∈ F(T). This completes the proof.

4. Conclusion

In this paper, we introduce an algorithm by the iteration process of Kadioglu (PNS) to
approximating a fixed point for L-Lipschitzian Suzuki-generalized nonexpansive mappings in
hyperbolic spaces and introduce a L-Lipschitzian Suzuki-generalized nonexpansive mapping,
i.e.,

1
2

d(x,Tx)≤ d(x, y)⇒ d(Tx,T y)≤ Ld(x, y).

We obtain fixed point theorems, ∆-convergence theorems, and convergence theorems for L-
Lipschitzian Suzuki-generalized nonexpansive mappings in a hyperbolic space. Moreover,
we obtain that examples, lemmas and theorems for L-Lipschitzian Suzuki-generalized
nonexpansive mappings on a nonempty subset of a hyperbolic spaces in the following way:

(1) Let {Ti}k
i=1 be a self finite family of L i-Lipschitzian Suzuki-generalized nonexpansive

mappings on M. Then

d(xn,Ti y)≤ (1+2L i)d(xn,Tixn)+L id(xn, y)

for all x, y ∈ M, {xn} is approximate fixed point sequence in M.

(2) Let M be a nonempty and convex subset of a strictly convex hyperbolic space X . If {Ti}k
i=1

be a self finite family of unL i-Lipschitzian Suzuki-generalized nonexpansive mappings
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on M, that is there exist a sequence {un} and L i > 0 such that
1
2

d(x,Tix)≤ d(x, y)⇒ d(Tix,Ti y)≤ unL id(x, y), ∀ n ≥ 1, x, y ∈ M.

with unL i → 1, for all i = 1,2, . . . ,k and F(T) 6= ;. If {xn}, {yn} are bounded approximate
fixed point sequence in M, then F(T) is closed and convex.

(3) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic
space X with monotone modulus of uniform convexity η. Let a slef-map {Ti}k

i=1 be a self
finite family of L i-Lipschitzian Suzuki-generalized nonexpansive mappings on M, such
that F(T) 6= ;. Then the sequence {xn} defined in (3.2), ∆-converges to a common fixed
point of {Ti}k

i=1 .

(4) Let M be a nonempty closed convex subset of a complete uniformly convex hyperbolic space
X with monotone modulus of uniform convexity η. Let a slef-map {Ti}k

i=1 be a self finite
family of L i-Lipschitzian Suzuki-generalized nonexpansive mappings on M, such that
F(T) 6= ; and F(T) is closed. Then the sequence {xn} defined in (3.2) converges strongly to
p ∈ F(T) if and only if liminf

n→∞ d(xn,F(T))= 0, where d(xn,F(T))= inf
p∈F(T)

d(xn, p).
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