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1. Introduction
Recently, there have been so many studies of the sequences of numbers in the literature that
concern about subsequences of the Horadam numbers and generalized Tribonacci numbers
such as Fibonacci, Lucas, Pell and Jacobsthal numbers; Tribonacci, Tribonacci-Lucas, Padovan,
Perrin, Padovan-Perrin, Narayana, third order Jacobsthal and third order Jacobsthal-Lucas
numbers.

The sequences of numbers were widely used in many research areas, such as physics,
engineering, architecture, nature and art. For example, the ratio of two consecutive Fibonacci
numbers converges to the Golden section (ratio), αF = 1+p5

2 ; which appears in modern
research, particularly physics of the high energy particles or theoretical physics. Another
example, the ratio of two consecutive Padovan numbers converges to the Plastic ratio,

αP = 3

√
1
2 + 1

6

√
23
3 + 3

√
1
2 − 1

6

√
23
3 , which have many applications to such as architecture (see [9]).
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One last example, the ratio of two consecutive Tribonacci numbers converges to the Tribonacci

ratio, αT = 1+ 3p
19+3

p
33+ 3p

19−3
p

33
3 . For a short introduction to these three constants (see [10]).

On the other hand, the matrix sequences have taken so much interest for different type of
numbers. For matrix sequences of generalized Horadam type numbers (see for example [4], [5],
[7], [16], [17], [18], [21], [24]), and for matrix sequences of generalized Tribonacci type numbers
(see for instance [2], [22], [23]).

In this paper, the matrix sequences of Tribonacci and Tribonacci-Lucas numbers will be
defined for the first time in the literature. Then, by giving the generating functions, the Binet
formulas, and summation formulas over these new matrix sequences, we will obtain some
fundamental properties on Tribonacci and Tribonacci-Lucas numbers. Also, we will present the
relationship between these matrix sequences.

First, we give some background about Tribonacci and Tribonacci-Lucas numbers. Tribonacci
sequence {Tn}n≥0 (sequence A000073 in [13]) and Tribonacci-Lucas sequence {Kn}n≥0 (sequence
A001644 in [13]) are defined by the third-order recurrence relations

Tn = Tn−1 +Tn−2 +Tn−3, T0 = 0,T1 = 1,T2 = 1, (1.1)

and

Kn = Kn−1 +Kn−2 +Kn−3, K0 = 3,K1 = 1,K2 = 3 (1.2)

respectively. Tribonacci concept was introduced by M. Feinberg [6] in 1963. Basic properties of
it is given in [1], [11], [12], [20] and Binet formula for the nth number is given in [15].

The sequences {Tn}n≥0 and {Kn}n≥0 can be extended to negative subscripts by defining

T−n =−T−(n−1) −T−(n−2) +T−(n−3)

and

K−n =−K−(n−1) −K−(n−2) +K−(n−3)

for n = 1,2,3, . . ., respectively. Therefore, recurrences (1.1) and (1.2) hold for all integer n.
By writing Tn−1 = Tn−2+Tn−3+Tn−4 and eliminating Tn−2 and Tn−3 between this recurrence

relation and recurrence relation (1.1), a useful alternative recurrence relation is obtained for
n ≥ 4:

Tn = 2Tn−1 −Tn−4, T0 = 0,T1 = T2 = 1,T3 = 2 . (1.3)

Extension of the definition of Tn to negative subscripts can be proved by writing the recurrence
relation (1.3) as

T−n = 2T−n+3 −T−n+4.

Note that T−n = T2
n−1 −Tn−2Tn, (see [3]).

We can give some relations between {Tn} and {Kn} as

Kn = 3Tn+1 −2Tn −Tn−1 (1.4)

and

Kn = Tn +2Tn−1 +3Tn−2 (1.5)
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and also

Kn = 4Tn+1 −Tn −Tn+2. (1.6)

Note that the last three identities hold for all integers n.
The first few Tribonacci numbers and Tribonacci Lucas numbers with positive subscript are

given in the following table:
n 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
Tn 0 1 1 2 4 7 13 24 44 81 149 274 504 . . .
T−n 0 0 1 −1 0 2 −3 1 4 −8 5 7 −20 . . .

The first few Tribonacci numbers and Tribonacci Lucas numbers with negative subscript
are given in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
Kn 3 1 3 7 11 21 39 71 131 241 443 815 1499 . . .
K−n 3 −1 −1 5 −5 −1 11 −15 3 23 −41 21 43 . . .

It is well known that for all integers n, usual Tribonacci and Tribonacci-Lucas numbers can
be expressed using Binet’s formulas

Tn = αn+1

(α−β)(α−γ)
+ βn+1

(β−α)(β−γ)
+ γn+1

(γ−α)(γ−β)
(1.7)

and

Kn =αn +βn +γn (1.8)

respectively, where α,β and γ are the roots of the cubic equation x3 − x2 − x−1= 0. Moreover,

α= 1+ 3
√

19+3
p

33+ 3
√

19−3
p

33
3

,

β= 1+ω 3
√

19+3
p

33+ω2 3
√

19−3
p

33
3

,

γ= 1+ω2 3
√

19+3
p

33+ω 3
√

19−3
p

33
3

,

where

ω= −1+ i
p

3
2

= exp(2πi/3),

is a primitive cube root of unity. Note that we have the following identities

α+β+γ= 1,

αβ+αγ+βγ=−1,

αβγ= 1 .

The generating functions for the Tribonacci sequence {Tn}n≥0 and Tribonacci-Lucas sequence
{Kn}n≥0 are

∞∑
n=0

Tnxn = x
1− x− x2 − x3 and

∞∑
n=0

Knxn = 3−2x− x2

1− x− x2 − x3 . (1.9)
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Note that the Binet form of a sequence satisfying (1.1) and (1.2) for non-negative integers
is valid for all integers n. This result of Howard and Saidak [8] is even true in the case of
higher-order recurrence relations as the following theorem shows.

Theorem 1.1 ([8]). Let {wn} be a sequence such that

{wn}= a1wn−1 +a2wn−2 + . . .+akwn−k

for all integers n, with arbitrary initial conditions w0,w1, . . . ,wk−1. Assume that each ai and the
initial conditions are complex numbers. Write

f (x)= xk −a1xk−1 −a2xk−2 − . . .−ak−1x−ak (1.10)

= (x−α1)d1(x−α2)d2 . . . (x−αh)dh

with d1 +d2 + . . .+dh = k, and α1,α2, . . . ,αk distinct. Then
(a) For all n,

wn =
k∑

m=1
N(n,m)(αm)n (1.11)

where

N(n,m)= A(m)
1 + A(m)

2 n+ . . .+ A(m)
rm

nrm−1 =
rm−1∑
u=0

A(m)
u+1nu

with each A(m)
i a constant determined by the initial conditions for {wn}. Here, eq. (1.11) is

called the Binet form (or Binet formula) for {wn}. We assume that f (0) 6= 0 so that {wn} can
be extended to negative integers n.

If the zeros of (1.10) are distinct, as they are in our examples, then

wn = A1(α1)n + A2(α2)n + . . .+ Ak(αk)n.

(b) The Binet form for {wn} is valid for all integers n.

2. The Matrix Sequences of Tribonacci and Tribonacci-Lucas Numbers
In this section we define Tribonacci and Tribonacci-Lucas matrix sequences and investigate
their properties.

Definition 2.1. For any integer n ≥ 0, the Tribonacci matrix (Tn) and Tribonacci-Lucas matrix
(Kn) are defined by

Tn =Tn−1 +Tn−2 +Tn−3, (2.1)

Kn =Kn−1 +Kn−2 +Kn−3, (2.2)

respectively, with initial conditions

T0 =
1 0 0

0 1 0
0 0 1

 , T1 =
1 1 1

1 0 0
0 1 0

 , T2 =
2 2 1

1 1 1
1 0 0


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and

K0 =
 1 2 3

3 −2 −1
−1 4 −1

 , K1 =
3 4 1

1 2 3
3 −2 −1

 , K2 =
7 4 3

3 4 1
1 2 3

 .

The sequences {Tn}n≥0 and {Kn}n≥0 can be extended to negative subscripts by defining

T−n =−T−(n−1) −T−(n−2) +T−(n−3)

and

K−n =−K−(n−1) −K−(n−2) +K−(n−3)

for n = 1,2,3, . . ., respectively. Therefore, recurrences (2.1) and (2.2) hold for all integers n.

The following theorem gives the nth general terms of the Tribonacci and Tribonacci-Lucas
matrix sequences.

Theorem 2.2. For any integer n ≥ 0, we have the following formulas of the matrix sequences:

Tn =
Tn+1 Tn +Tn−1 Tn

Tn Tn−1 +Tn−2 Tn−1
Tn−1 Tn−2 +Tn−3 Tn−2

 , (2.3)

Kn =
Kn+1 Kn +Kn−1 Kn

Kn Kn−1 +Kn−2 Kn−1
Kn−1 Kn−2 +Kn−3 Kn−2

 . (2.4)

Proof. We prove (2.3) by strong mathematical induction on n. Eq. (2.4) can be proved similarly.
If n = 0 then, since T1 = 1, T2 = 1, T0 = T−1 = 0, T−2 = 1, T−3 =−1, we have

T0 =
 T1 T0 +T−1 T0

T0 T−1 +T−2 T−1
T−1 T−2 +T−3 T−2

=
1 0 0

0 1 0
0 0 1


which is true and

T1 =
T2 T1 +T0 T1

T1 T0 +T−1 T0
T0 T−1 +T−2 T−1

=
1 1 1

1 0 0
0 1 0


which is true. Assume that the equality holds for n ≤ k. For n = k+1, we have

Tk+1 =Tk +Tk−1 +Tk−2

=
Tk+1 Tk +Tk−1 Tk

Tk Tk−1 +Tk−2 Tk−1
Tk−1 Tk−2 +Tk−3 Tk−2

+
 Tk Tk−1 +Tk−2 Tk−1

Tk−1 Tk−2 +Tk−3 Tk−2
Tk−2 Tk−3 +Tk−4 Tk−3

+
Tk−1 Tk−2 +Tk−3 Tk−2

Tk−2 Tk−3 +Tk−4 Tk−3
Tk−3 Tk−4 +Tk−5 Tk−4


=

 Tk +Tk−1 +Tk+1 Tk +Tk−1 +Tk−1 +Tk−2 +Tk−2 +Tk−3 Tk +Tk−1 +Tk−2
Tk +Tk−1 +Tk−2 Tk−1 +Tk−2 +Tk−2 +Tk−3 +Tk−3 +Tk−4 Tk−1 +Tk−2 +Tk−3

Tk−1 +Tk−2 +Tk−3 Tk−2 +Tk−3 +Tk−3 +Tk−4 +Tk−4 +Tk−5 Tk−2 +Tk−3 +Tk−4


=

Tk+2 Tk +Tk+1 Tk+1
Tk+1 Tk +Tk−1 Tk
Tk Tk−1 +Tk−2 Tk−1

 .

Thus, by strong induction on n, this proves (2.3).

Communications in Mathematics and Applications, Vol. 11, No. 2, pp. 281–295, 2020



286 Matrix Sequences of Tribonacci and Tribonacci-Lucas Numbers: Y. Soykan

We now give the Binet formulas for the Tribonacci and Tribonacci-Lucas matrix sequences.

Theorem 2.3. For every integer n, the Binet formulas of the Tribonacci and Tribonacci-Lucas
matrix sequences are given by

Tn = A1α
n +B1β

n +C1γ
n, (2.5)

Kn = A2α
n +B2β

n +C2γ
n, (2.6)

where

A1 = αT2 +α(α−1)T1 +T0

α(α−γ)(α−β)
, B1 = βT2 +β(β−1)T1 +T0

β(β−γ)(β−α)
, C1 = γT2 +γ(γ−1)T1 +T0

γ(γ−β)(γ−α)
,

A2 = αK2 +α(α−1)K1 +K0

α(α−γ)(α−β)
, B2 = βK2 +β(β−1)K1 +K0

β(β−γ)(β−α)
, C2 = γK2 +γ(γ−1)K1 +K0

γ(γ−β)(γ−α)
.

Proof. We prove the theorem only for n ≥ 0 because of Theorem 1.1. We prove (2.5). By the
assumption, the characteristic equation of (2.1) is x3 − x2 − x−1= 0 and the roots of it are α, β
and γ. So it’s general solution is given by

Tn = A1α
n +B1β

n +C1γ
n.

Using initial condition which is given in Definition 2.1, and also applying linear algebra
operations, we obtain the matrices A1, B1, C1 as desired. This gives the formula for Tn.

Similarly, we have the formula (2.6).

The well known Binet formulas for Tribonacci and Tribonacci-Lucas numbers are given
in (1.7) and (1.8), respectively. But, we will obtain these functions in terms of Tribonacci and
Tribonacci-Lucas matrix sequences as a consequence of Theorems 2.2 and 2.3. To do this, we
will give the formulas for these numbers by means of the related matrix sequences. In fact, in
the proof of next corollary, we will just compare the linear combination of the 2nd row and 1st
column entries of the matrices.

Corollary 2.4. For every integers n, the Binet’s formulas for Tribonacci and Tribonacci-Lucas
numbers are given as

Tn = αn+1

(α−γ)(α−β)
+ βn+1

(β−γ)(β−α)
+ γn+1

(γ−β)(γ−α)
, Kn =αn +βn +γn.

Proof. From Theorem 2.3, we have

Tn = A1α
n +B1β

n +C1γ
n

= αT2 +α(α−1)T1 +T0

α(α−γ)(α−β)
αn + βT2 +β(β−1)T1 +T0

β(β−γ)(β−α)
βn + γT2 +γ(γ−1)T1 +T0

γ(γ−β)(γ−α)
γn

= αn−1

(α−γ)(α−β)

α3 α(α+1) α2

α2 α+1 α

α α(α−1) 1

+ βn−1

(β−γ)(β−α)

β3 β(β+1) β2

β2 β+1 β

β β(β−1) 1


+ γn−1

(γ−β)(γ−α)

γ3 γ(γ+1) γ2

γ2 γ+1 γ

γ γ(γ−1) 1


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By Theorem 2.2, we know that

Tn =
Tn+1 Tn +Tn−1 Tn

Tn Tn−1 +Tn−2 Tn−1
Tn−1 Tn−2 +Tn−3 Tn−2

 .

Now, if we compare the 2nd row and 1st column entries with the matrices in the above two
equations, then we obtain

Tn = αn−1α2

(α−γ)(α−β)
+ βn−1β2

(β−γ)(β−α)
+ γn−1γ2

(γ−β)(γ−α)

= αn+1

(α−γ)(α−β)
+ βn+1

(β−γ)(β−α)
+ γn+1

(γ−β)(γ−α)
.

From Theorem 2.3, we obtain

Kn = A2α
n +B2β

n +C2γ
n

= αK2 +α(α−1)K1 +K0

α(α−γ)(α−β)
αn + βK2 +β(β−1)K1 +K0

β(β−γ)(β−α)
βn + γK2 +γ(γ−1)K1 +K0

γ(γ−β)(γ−α)
γn

= αn−1

(α−γ)(α−β)

3α2 +4α+1 4α2 +2 α2 +2α+3
α2 +2α+3 2α2 +2α−2 3α2 −2α−1

3α2 −2α−1 −2α2 +4α+4 −α2 +4α−1


+ βn−1

(β−γ)(β−α)

3β2 +4β+1 4β2 +2 β2 +2β+3
β2 +2β+3 2β2 +2β−2 3β2 −2β−1

3β2 −2β−1 −2β2 +4β+4 −β2 +4β−1


+ γn−1

(γ−β)(γ−α)

3γ2 +4γ+1 4γ2 +2 γ2 +2γ+3
γ2 +2γ+3 2γ2 +2γ−2 3γ2 −2γ−1

3γ2 −2γ−1 −2γ2 +4γ+4 −γ2 +4γ−1

 .

By Theorem 2.2, we know that

Kn =
Kn+1 Kn +Kn−1 Kn

Kn Kn−1 +Kn−2 Kn−1
Kn−1 Kn−2 +Kn−3 Kn−2

 .

Now, if we compare the 2nd row and 1st column entries with the matrices in the above last two
equations, then we obtain

Kn = αn−1(α2 +2α+3)
(α−γ)(α−β)

+ βn−1(β2 +2β+3)
(β−γ)(β−α)

+ γn−1(γ2 +2γ+3)
(γ−β)(γ−α)

.

Using the relations, α+β+γ= 1, αβγ= 1 and considering α,β and γ are the roots the equation
x3 − x2 − x−1= 0, we obtain

α2 +2α+3
(α−γ)(α−β)

= α2 +2α+3
α2 −αβ−αγ+βγ = α

α

(α2 +2α+3)
α2 +α(−β−γ)+βγ

= (α2 +2α+3)α
α3 +α2(α−1)+1

= (α2 +2α+3)α
2α3 −α2 +1

= (α2 +2α+3)α
2(α2 +α+1)−α2 +1

= (α2 +2α+3)α
(α2 +2α+3)

=α,

β2 +2β+3
(β−γ)(β−α)

= β2 +2β+3
β2 −αβ+αγ−βγ =β,
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γ2 +2γ+3
(γ−β)(γ−α)

= γ2 +2γ+3
γ2 +αβ−αγ−βγ = γ.

So finally we conclude that

Kn =αn +βn +γn

as required.

Now, we present summation formulas for Tribonacci and Tribonacci-Lucas matrix sequences.

Theorem 2.5. For m > j ≥ 0, we have
n−1∑
i=0

Tmi+ j =
Tmn+m+ j +Tmn−m+ j + (1−Km)Tmn+ j

Km −K−m
− Tm+ j +T j−m + (1−Km)T j

Km −K−m
(2.7)

and
n−1∑
i=0

Kmi+ j =
Kmn+m+ j +Kmn−m+ j + (1−Km)Kmn+ j

Km −K−m
− Km+ j +K j−m + (1−Km)K j

Km −K−m
. (2.8)

Proof. Note that
n−1∑
i=0

Tmi+ j =
n−1∑
i=0

(A1α
mi+ j +B1β

mi+ j +C1γ
mi+ j)

= A1α
j
(
αmn −1
αm −1

)
+B1β

j
(
βmn −1
βm −1

)
+C1γ

j
(
γmn −1
γm −1

)
and

n−1∑
i=0

Kmi+ j =
n−1∑
i=0

(A2α
mi+ j +B2β

mi+ j +C2γ
mi+ j)

= A2α
j
(
αmn −1
αm −1

)
+B2β

j
(
βmn −1
βm −1

)
+C2γ

j
(
γmn −1
γm −1

)
.

Simplifying and rearranging the last equalities in the last two expression imply (2.7) and (2.8)
as required.

As in Corollary 2.4, in the proof of next corollary, we just compare the linear combination of
the 2nd row and 1st column entries of the relevant matrices.

Corollary 2.6. For m > j ≥ 0, we have
n−1∑
i=0

Tmi+ j =
Tmn+m+ j +Tmn−m+ j + (1−Km)Tmn+ j

Km −K−m
− Tm+ j +T j−m + (1−Km)T j

Km −K−m
(2.9)

and
n−1∑
i=0

Kmi+ j =
Kmn+m+ j +Kmn−m+ j + (1−Km)Kmn+ j

Km −K−m
− Km+ j +K j−m + (1−Km)K j

Km −K−m
(2.10)

Note that using the above Corollary we obtain the following well known formulas (taking
m = 1, j = 0):

n−1∑
i=0

Ti = Tn+2 −Tn −1
2

and
n−1∑
i=0

K i = Kn+2 −Kn

2
.

We now give generating functions of T and K .
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Theorem 2.7. The generating function for the Tribonacci and Tribonacci-Lucas matrix sequences
are given as

∞∑
n=0

Tnxn = 1
1− x− x2 − x3

 1 x+ x2 x
x 1− x x2

x2 x− x2 1− x− x2


and

∞∑
n=0

Knxn = 1
1− x− x2 − x3

1+2x+3x2 2+2x−2x2 3−2x− x2

3−2x− x2 −2+4x+4x2 −1+4x− x2

−1+4x− x2 4−6x −1+5x2


respectively.

Proof. We prove the Tribonacci case. Suppose that g(x)=∑∞
n=0 Tnxn is the generating function

for the sequence {Tn}n≥0. Then, using Definition 2.1, we obtain

g(x)=
∞∑

n=0
Tnxn =T0 +T1x+T2x2 +

∞∑
n=3

Tnxn

=T0 +T1x+T2x2 +
∞∑

n=3
(Tn−1 +Tn−2 +Tn−3)xn

=T0 +T1x+T2x2 +
∞∑

n=3
Tn−1xn +

∞∑
n=3

Tn−2xn +
∞∑

n=3
Tn−3xn

=T0 +T1x+T2x2 −T0x−T1x2 −T0x2 + x
∞∑

n=0
Tnxn + x2

∞∑
n=0

Tnxn + x3
∞∑

n=0
Tnxn

=T0 +T1x+T2x2 −T0x−T1x2 −T0x2 + xg(x)+ x2 g(x)+ x3 g(x).

Rearranging above equation, we get

g(x)= T0 + (T1 −T0)x+ (T2 −T1 −T0)x2

1− x− x2 − x3 .

which equals the
∞∑

n=0
Tnxn in the theorem. This completes the proof.

Tribonacci-Lucas case can be proved similarly.
The well known generating functions for Tribonacci and Tribonacci-Lucas numbers are as

in (1.9). However, we will obtain these functions in terms of Tribonacci and Tribonacci-Lucas
matrix sequences as a consequence of Theorem 2.7. To do this, we will again compare the 2nd
row and 1st column entries with the matrices in Theorem 2.7. Thus we have the following
corollary.

Corollary 2.8. The generating functions for the Tribonacci sequence {Tn}n≥0 and Tribonacci-
Lucas sequence {Kn}n≥0 are given as

∞∑
n=0

Tnxn = x
1− x− x2 − x3 and

∞∑
n=0

Knxn = 3−2x− x2

1− x− x2 − x3 ,

respectively.
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3. Relation Between Tribonacci and Tribonacci-Lucas Matrix
Sequences

The following theorem shows that there always exist interrelation between Tribonacci and
Tribonacci-Lucas matrix sequences.

Theorem 3.1. For the matrix sequences {Tn} and {Kn}, we have the following identities.
(a) Kn = 3Tn+1 −2Tn −Tn−1,

(b) Kn =Tn +2Tn−1 +3Tn−2,

(c) Kn = 4Tn+1 −Tn −Tn+2,

(d) Kn =−Tn+2 +4Tn+1 −Tn,

(e) Tn = 1
22 (5Kn+2 −3Kn+1 −4Kn)

Proof. From (1.4), (1.5) and (1.6), (a), (b) and (c) follow. It is easy to show that Kn =
−Tn+2 +4Tn+1 −Tn and 22Tn = 5Kn+2 −3Kn+1 −4Kn using Binet formulas of the numbers
Tn and Kn, so now (d) and (e) follow.

Lemma 3.2. For all non-negative integers m and n, we have the following identities.
(a) K0Tn =TnK0 =Kn,

(b) T0Kn =KnT0 =Kn.

Proof. Identities can be established easily. Note that to show (a) we need to use all the relations
(1.4), (1.5) and (1.6).

Next corollary gives another relation between the numbers Tn and Kn and also the matrices
Tn and Kn.

Corollary 3.3. We have the following identities.
(a) Tn = 1

22 (Kn +5Kn−1 +2Kn+1),

(b) Tn = 1
22 (Kn +5Kn−1 +2Kn+1).

Proof. From Lemma 3.2(a), we know that K0Tn =Kn. To show (a), use Theorem 2.2 for the
matrix Tn and calculate the matrix operation K −1

0 Kn and then compare the 2nd row and 1st
column entries with the matrices Tn and K −1

0 Kn. Now (b) follows from (a).

To prove the following Theorem we need the next Lemma.

Lemma 3.4. Let A1, B1, C1; A2, B2, C2 as in Theorem 2.3. Then the following relations hold:

A2
1 = A1, B2

1 = B1, C2
1 = C1,

A1B1 = B1A1 = A1C1 = C1A1 = C1B1 = B1C1 = (0) ,

A2B2 = B2A2 = A2C2 = C2A2 = C2B2 = B2C2 = (0) .

Proof. Using α+β+γ= 1, αβ+αγ+βγ=−1 and αβγ= 1, required equalities can be established
by matrix calculations.

Communications in Mathematics and Applications, Vol. 11, No. 2, pp. 281–295, 2020



Matrix Sequences of Tribonacci and Tribonacci-Lucas Numbers: Y. Soykan 291

Theorem 3.5. For all non-negative integers m and n, we have the following identities.
(a) TmTn =Tm+n =TnTm,

(b) TmKn =KnTm =Km+n,

(c) KmKn =KnKm = 9Tm+n+2 −12Tm+n+1 −2Tm+n +4Tm+n−1 +Tm+n−2,

(d) KmKn =KnKm =Tm+n +4Tm+n−1 +10Tm+n−2 +12Tm+n−3 +9Tm+n−4,

(e) KmKn =KnKm =Tm+n −8Tm+n+1 +18Tm+n+2 −8Tm+n+3 +Tm+n+4.

Proof. (a) Using Lemma 3.4 we obtain

TmTn = (A1α
m +B1β

m +C1γ
m)(A1α

n +B1β
n +C1γ

n)

= A2
1α

m+n +B2
1β

m+n +C2
1γ

m+n + A1B1α
mβn +B1A1α

nβm

+ A1C1α
mγn +C1A1α

nγm +B1C1β
mγn +C1B1β

nγm

= A1α
m+n +B1β

m+n +C1γ
m+n

=Tm+n.

(b) By Lemma 3.2, we have

TmKn =TmTnK0.

Now from (a) and again by Lemma 3.2 we obtain TmKn =Tm+nK0 =Km+n.

It can be shown similarly that KnTm =Km+n.

(c) Using (a) and Theorem 3.1(a) we obtain

KmKn = (3Tm+1 −2Tm −Tm−1)(3Tn+1 −2Tn −Tn−1)

= 2TnTm−1 −6TnTm+1 +2TmTn−1 −6TmTn+1

+4TmTn +Tm−1Tn−1 −3Tm−1Tn+1 −3Tm+1Tn−1 +9Tm+1Tn+1

= 2Tm+n−1 −6Tm+n+1 +2Tm+n−1 −6Tm+n+1 +4Tm+n +Tm+n−2 −3Tm+n

−3Tm+n +9Tm+n+2

= 9Tm+n+2 −12Tm+n+1 −2Tm+n +4Tm+n−1 +Tm+n−2.

It can be shown similarly that KnKm = 9Tm+n+2−12Tm+n+1−2Tm+n+4Tm+n−1+Tm+n−2.

The remaining of identities can be proved by considering again (a) and Theorem 3.1.

Comparing matrix entries and using Theorem 2.2 we have next result.

Corollary 3.6. For Tribonacci and Tribonacci-Lucas numbers, we have the following identities:
(a) Tm+n = TmTn+1 +Tn (Tm−1 +Tm−2)+Tm−1Tn−1

(b) Km+n = TmKn+1 +Kn (Tm−1 +Tm−2)+Kn−1Tm−1

(c) KmKn+1 + Kn (Km−1 +Km−2) + Km−1Kn−1 = 9Tm+n+2 − 12Tm+n+1 − 2Tm+n + 4Tm+n−1 +
Tm+n−2

(d) KmKn+1 + Kn (Km−1 +Km−2) + Km−1Kn−1 = Tm+n + 4Tm+n−1 + 10Tm+n−2 + 12Tm+n−3 +
9Tm+n−4
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(e) KmKn+1+Kn (Km−1 +Km−2)+Km−1Kn−1 = Tm+n−8Tm+n+1+18Tm+n+2−8Tm+n+3+Tm+n+4

Proof. (a) From Theorem 3.5 we know that TmTn =Tm+n. Using Theorem 2.2, we can write
this result asTm+1 Tm +Tm−1 Tm

Tm Tm−1 +Tm−2 Tm−1
Tm−1 Tm−2 +Tm−3 Tm−2

Tn+1 Tn +Tn−1 Tn
Tn Tn−1 +Tn−2 Tn−1

Tn−1 Tn−2 +Tn−3 Tn−2


=

Tm+n+1 Tm+n +Tm+n−1 Tm+n
Tm+n Tm+n−1 +Tm+n−2 Tm+n−1

Tm+n−1 Tm+n−2 +Tm+n−3 Tm+n−2

 .

Now, by multiplying the left-side matrices and then by comparing the 2nd rows and 1st
columns entries, we get the required identity in (a).

The remaining of identities can be proved by considering again Theorems 3.5 and 2.2.

The next two theorems provide us the convenience to obtain the powers of Tribonacci and
Tribonacci-Lucas matrix sequences.

Theorem 3.7. For non-negative integers m,n and r with n ≥ r, the following identities hold:
(a) T m

n =Tmn,

(b) T m
n+1 =T m

1 Tmn,

(c) Tn−rTn+r =T 2
n =T n

2 .

Proof. (a) We can write T m
n as

T m
n =TnTn . . .Tn (m times).

Using Theorem 3.5(a) iteratively, we obtain the required result:

T m
n =TnTn . . .Tn︸ ︷︷ ︸

m times

=T2nTnTn . . .Tn︸ ︷︷ ︸
m−1 times

=T3nTnTn . . .Tn︸ ︷︷ ︸
m−2 times

...

=T(m−1)nTn

=Tmn.

(b) As a similar approach in (a) we have

T m
n+1 =Tn+1.Tn+1 . . .Tn+1 =Tm(n+1) =TmTmn =T1Tm−1Tmn.

Using Theorem 3.5(a), we can write iteratively Tm = T1Tm−1, Tm−1 = T1Tm−2, . . . ,
T2 =T1T1. Now it follows that

T m
n+1 =T1T1 . . .T1︸ ︷︷ ︸

m times

Tmn =T m
1 Tmn.
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(c) Theorem 3.5(a) gives

Tn−rTn+r =T2n =TnTn =T 2
n

and also

Tn−rTn+r =T2n =T2T2 . . .T2︸ ︷︷ ︸
n times

=T n
2 .

We have analogues results for the matrix sequence Kn.

Theorem 3.8. For non-negative integers m,n and r with n ≥ r, the following identities hold:
(a) Kn−rKn+r =K 2

n ,

(b) K m
n =K m

0 Tmn.

Proof. (a) We use Binet’s formula of Tribonacci-Lucas matrix sequence which is given in
Theorem 2.3. So

Kn−rKn+r −K 2
n

= (A2α
n−r +B2β

n−r +C2γ
n−r)(A2α

n+r +B2β
n+r +C2γ

n+r)− (A2α
n +B2β

n +C2γ
n)2

= A2B2α
n−rβn−r(αr −βr)2 + A2C2α

n−rγn−r(αr −γr)2 +B2C2β
n−rγn−r(βr −γr)2

= 0

since A2B2 = A2C2 = C2B2 (see Lemma 3.4). Now we get the result as required.

(b) By Theorem 3.7, we have

K m
0 Tmn =K0K0 . . .K0︸ ︷︷ ︸

m times

TnTn . . .Tn︸ ︷︷ ︸
m times

.

When we apply Lemma 3.2(a) iteratively, it follows that

K m
0 Tmn = (K0Tn)(K0Tn) . . . (K0Tn)

=KnKn . . .Kn =K m
n .

This completes the proof.

4. Conclusion
Recently, there have been so many studies of the sequences of numbers in the literature and the
sequences of numbers were widely used in many research areas, such as physics, engineering,
architecture, nature and art. Many authors use matrix methods in their work. On the other
hand, the matrix sequences have taken so much interest for different type of numbers (see, for
example, [14], [18], [19], [22]). In this paper, we defined the matrix sequences of Tribonacci and
Tribonacci-Lucas numbers. It is our intention to continue the study and explore some properties
of some type of matrix sequences of special numbers, such as matrix sequences of Pentanacci
and Pentanacci-Lucas numbers.

We can summarize the sections as follows:

• In Section 1, we have presented some background about Tribonacci and Tribonacci-Lucas
numbers.
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• In Section 2, we have defined Tribonacci and Tribonacci-Lucas matrix sequences and then
the generating functions, the Binet formulas, and summation formulas over these new
matrix sequences have been presented.

• In Section 3, we have given some relationship between these matrix sequences.
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